The best of both worlds: Dual systems of reasoning in animals and AI

[1]  Fiona R Cross,et al.  Arthropod Intelligence? The Case for Portia , 2020, Frontiers in Psychology.

[2]  Ajay Narendra,et al.  Vertical Lobes of the Mushroom Bodies Are Essential for View-Based Navigation in Australian Myrmecia Ants , 2020, Current Biology.

[3]  Lars Chittka,et al.  Bumblebees Learn a Relational Rule but Switch to a Win-Stay/Lose-Switch Heuristic After Extensive Training , 2020, bioRxiv.

[4]  Andrew C. Lin,et al.  Localized inhibition in the Drosophila mushroom body , 2020, bioRxiv.

[5]  Lars Chittka,et al.  Bumble bees display cross-modal object recognition between visual and tactile senses , 2020, Science.

[6]  S. Caron,et al.  Visual Input into the Drosophila melanogaster Mushroom Body , 2020, bioRxiv.

[7]  Demis Hassabis,et al.  Mastering Atari, Go, chess and shogi by planning with a learned model , 2019, Nature.

[8]  M. Mizunami,et al.  Separate But Interactive Parallel Olfactory Processing Streams Governed by Different Types of GABAergic Feedback Neurons in the Mushroom Body of a Basal Insect , 2019, The Journal of Neuroscience.

[9]  Y. Zhong,et al.  Long-term memory is formed immediately without the need for protein synthesis-dependent consolidation in Drosophila , 2019, Nature Communications.

[10]  Jonathan Evans Reflections on reflection: the nature and function of type 2 processes in dual-process theories of reasoning , 2019, Thinking & Reasoning.

[11]  E. Tibbetts,et al.  Transitive inference in Polistes paper wasps , 2019, Biology Letters.

[12]  Clint J. Perry,et al.  How foresight might support the behavioral flexibility of arthropods , 2019, Current Opinion in Neurobiology.

[13]  Patrick T. McGrath,et al.  Parallel Multimodal Circuits Control an Innate Foraging Behavior , 2018, Neuron.

[14]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[15]  T. Triphan,et al.  Olfactory Object Recognition Based on Fine-Scale Stimulus Timing in Drosophila , 2018, bioRxiv.

[16]  Identification and characterization of mushroom body neurons that regulate fat storage in Drosophila , 2018, Neural Development.

[17]  Giorgio Gronchi,et al.  Dual Process Theory of Thought and Default Mode Network: A Possible Neural Foundation of Fast Thinking , 2018, Front. Psychol..

[18]  R. Bogacz,et al.  Dendritic Integration of Sensory Evidence in Perceptual Decision-Making , 2018, Cell.

[19]  Suewei Lin,et al.  Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior , 2018, eLife.

[20]  Eleni Vasilaki,et al.  Abstract concept learning in a simple neural network inspired by the insect brain , 2018, bioRxiv.

[21]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[22]  Adam Wierman,et al.  Thinking Fast and Slow , 2017, SIGMETRICS Perform. Evaluation Rev..

[23]  Clint J. Perry,et al.  The frontiers of insect cognition , 2017, Current Opinion in Behavioral Sciences.

[24]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[25]  H. Kazama,et al.  Origins of Cell-Type-Specific Olfactory Processing in the Drosophila Mushroom Body Circuit , 2017, Neuron.

[26]  Mathias Osvath,et al.  Ravens parallel great apes in flexible planning for tool-use and bartering , 2017, Science.

[27]  Aljoscha Nern,et al.  Neural signatures of dynamic stimulus selection in Drosophila , 2017, Nature Neuroscience.

[28]  David Barber,et al.  Thinking Fast and Slow with Deep Learning and Tree Search , 2017, NIPS.

[29]  L. Abbott,et al.  Representations of Novelty and Familiarity in a Mushroom Body Compartment , 2017, Cell.

[30]  Clint J. Perry,et al.  Bumblebees show cognitive flexibility by improving on an observed complex behavior , 2017, Science.

[31]  Thomas L. Griffiths,et al.  When Does Bounded-Optimal Metareasoning Favor Few Cognitive Systems? , 2017, AAAI.

[32]  V. Nityananda Attention-like processes in insects , 2016, Proceedings of the Royal Society B: Biological Sciences.

[33]  Makoto Mizunami,et al.  Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster , 2016, Scientific Reports.

[34]  Meng Wang,et al.  Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila , 2016, eLife.

[35]  Yoshinori Aso,et al.  Direct neural pathways convey distinct visual information to Drosophila mushroom bodies , 2016, eLife.

[36]  Benjamin L. de Bivort,et al.  Evidence for selective attention in the insect brain , 2016, bioRxiv.

[37]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[38]  Marko Becker,et al.  The Architecture Of The Mind , 2016 .

[39]  Gerald M. Rubin,et al.  Control of Sleep by Dopaminergic Inputs to the Drosophila Mushroom Body , 2015, Front. Neural Circuits.

[40]  M. Giurfa,et al.  Neural substrate for higher-order learning in an insect: Mushroom bodies are necessary for configural discriminations , 2015, Proceedings of the National Academy of Sciences.

[41]  Kevin N. Gurney,et al.  Decision-making and action selection in insects: inspiration from vertebrate-based theories , 2015, Front. Behav. Neurosci..

[42]  David G. Rand,et al.  The evolution and devolution of cognitive control: The costs of deliberation in a competitive world , 2015, Scientific Reports.

[43]  Peter Sterling,et al.  Principles of Neural Design , 2015 .

[44]  O. Sporns,et al.  Connectomics-Based Analysis of Information Flow in the Drosophila Brain , 2015, Current Biology.

[45]  Patrick M. Lu,et al.  Neurons Forming Optic Glomeruli Compute Figure–Ground Discriminations in Drosophila , 2015, The Journal of Neuroscience.

[46]  Ryohei Kanzaki,et al.  Information flow through neural circuits for pheromone orientation , 2014, Nature Communications.

[47]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[48]  G. Rubin,et al.  The neuronal architecture of the mushroom body provides a logic for associative learning , 2014, eLife.

[49]  Vikram Chandra,et al.  Neural correlates of water reward in thirsty Drosophila , 2014, Nature Neuroscience.

[50]  J. A. Stacey,et al.  Selective attention in the honeybee optic lobes precedes behavioral choices , 2014, Proceedings of the National Academy of Sciences.

[51]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[52]  Andrew B. Barron,et al.  Epigenomics and the concept of degeneracy in biological systems , 2013, Briefings in functional genomics.

[53]  M. Giurfa,et al.  Conceptual learning by miniature brains , 2013, Proceedings of the Royal Society B: Biological Sciences.

[54]  A. Chiang,et al.  An Octopamine-Mushroom Body Circuit Modulates the Formation of Anesthesia-Resistant Memory in Drosophila , 2013, Current Biology.

[55]  Clint J. Perry,et al.  Honey bees selectively avoid difficult choices , 2013, Proceedings of the National Academy of Sciences.

[56]  Karl J. Friston,et al.  Structural and Functional Brain Networks: From Connections to Cognition , 2013, Science.

[57]  Clint J. Perry,et al.  Invertebrate learning and cognition: relating phenomena to neural substrate. , 2013, Wiley interdisciplinary reviews. Cognitive science.

[58]  Valerie A Thompson,et al.  Why It Matters , 2013, Perspectives on psychological science : a journal of the Association for Psychological Science.

[59]  Jonathan Evans,et al.  Science Perspectives on Psychological , 2022 .

[60]  Martin P. Nawrot,et al.  Parallel Processing via a Dual Olfactory Pathway in the Honeybee , 2013, The Journal of Neuroscience.

[61]  Steven D. Wiederman,et al.  Selective Attention in an Insect Visual Neuron , 2013, Current Biology.

[62]  Jean-Claude Hervé,et al.  Gap-junction-mediated cell-to-cell communication , 2012, Cell and Tissue Research.

[63]  Tao Pan,et al.  Environmental perturbations lift the degeneracy of the genetic code to regulate protein levels in bacteria , 2012, Proceedings of the National Academy of Sciences.

[64]  Brian H. Smith,et al.  Ensemble Response in Mushroom Body Output Neurons of the Honey Bee Outpaces Spatiotemporal Odor Processing Two Synapses Earlier in the Antennal Lobe , 2012, PloS one.

[65]  Á. Eraña Dual process theories versus massive modularity hypotheses , 2012 .

[66]  R. Menzel,et al.  Mushroom Body Output Neurons Encode Odor–Reward Associations , 2011, The Journal of Neuroscience.

[67]  K. Stanovich Rationality and the Reflective Mind , 2010 .

[68]  Michael L. Anderson Neural reuse: A fundamental organizational principle of the brain , 2010, Behavioral and Brain Sciences.

[69]  Paul H. Mason,et al.  Degeneracy at Multiple Levels of Complexity , 2010 .

[70]  Wei Zhang,et al.  Functional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway , 2010, Proceedings of the National Academy of Sciences.

[71]  Axel Bender,et al.  Degeneracy: a design principle for achieving robustness and evolvability. , 2009, Journal of theoretical biology.

[72]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[73]  B. Brembs Mushroom Bodies Regulate Habit Formation in Drosophila , 2009, Current Biology.

[74]  Bruno van Swinderen,et al.  Shared Visual Attention and Memory Systems in the Drosophila Brain , 2009, PloS one.

[75]  James A. R. Marshall,et al.  Mammalian choices: combining fast-but-inaccurate and slow-but-accurate decision-making systems , 2008, Proceedings of the Royal Society B: Biological Sciences.

[76]  Wim De Neys,et al.  Conflict monitoring in dual process theories of thinking , 2008, Cognition.

[77]  K. Stanovich Distinguishing the reflective, algorithmic, and autonomous minds: Is it time for a tri-process theory? , 2008 .

[78]  David A. Lagnado,et al.  Straight Choices: The Psychology of Decision Making , 2007 .

[79]  S. Sloman,et al.  Base-rate respect: From ecological rationality to dual processes. , 2007, The Behavioral and brain sciences.

[80]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[81]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[82]  Melvin Cohn,et al.  Degeneracy, mimicry and crossreactivity in immune recognition. , 2005, Molecular immunology.

[83]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[84]  Liao Fu Luo The degeneracy rule of genetic code , 2005, Origins of life and evolution of the biosphere.

[85]  M. Osman An evaluation of dual-process theories of reasoning , 2004, Psychonomic bulletin & review.

[86]  Karl J. Friston,et al.  Degenerate neuronal systems sustaining cognitive functions , 2004, Journal of anatomy.

[87]  Uri Hershberg,et al.  Antigen-receptor degeneracy and immunological paradigms. , 2004, Molecular immunology.

[88]  Karl J. Friston,et al.  Degeneracy and redundancy in cognitive anatomy , 2003, Trends in Cognitive Sciences.

[89]  G. Edelman,et al.  Degeneracy and complexity in biological systems , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[90]  M. Srinivasan,et al.  The concepts of ‘sameness’ and ‘difference’ in an insect , 2001, Nature.

[91]  D. Moshman Diversity in reasoning and rationality: Metacognitive and developmental considerations , 2000, Behavioral and Brain Sciences.

[92]  K. Stanovich,et al.  Heuristics and Biases: Individual Differences in Reasoning: Implications for the Rationality Debate? , 2002 .

[93]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[94]  G Tononi,et al.  Measures of degeneracy and redundancy in biological networks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Max Coltheart,et al.  Modularity and cognition , 1999, Trends in Cognitive Sciences.

[96]  N. Strausfeld,et al.  Evolution, discovery, and interpretations of arthropod mushroom bodies. , 1998, Learning & memory.

[97]  S. Sloman The empirical case for two systems of reasoning. , 1996 .

[98]  Jonathan Evans,et al.  Rationality and reasoning , 1996 .

[99]  S. Epstein,et al.  Conflict Between Intuitive and Rational Processing: When People Behave Against Their Better Judgment , 1994 .

[100]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[101]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[102]  M M Mesulam,et al.  Large‐scale neurocognitive networks and distributed processing for attention, language, and memory , 1990, Annals of neurology.

[103]  P. C. Wason,et al.  Dual processes in reasoning? , 1975, Cognition.