A Molecularly Detailed NaV1.5 Model Reveals a New Class I Antiarrhythmic Target

Visual Abstract

[1]  D. Hanck,et al.  Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels , 2007, The Journal of physiology.

[2]  S. Priori,et al.  Gating Properties of SCN5A Mutations and the Response to Mexiletine in Long-QT Syndrome Type 3 Patients , 2007, Circulation.

[3]  Silvia G. Priori,et al.  Sodium channel mutations and arrhythmias , 2009, Nature Reviews Cardiology.

[4]  W. Catterall,et al.  THE CRYSTAL STRUCTURE OF A VOLTAGE-GATED SODIUM CHANNEL , 2011, Nature.

[5]  Jonathan R. Silva How to Connect Cardiac Excitation to the Atomic Interactions of Ion Channels , 2018, Biophysical journal.

[6]  D. Bers,et al.  A novel computational model of the human ventricular action potential and Ca transient. , 2010, Journal of Molecular and Cellular Cardiology.

[7]  Sharon A George,et al.  Revealing the Concealed Nature of Long-QT Type 3 Syndrome , 2017, Circulation. Arrhythmia and electrophysiology.

[8]  Mark A. Zaydman,et al.  Direct Measurement of Cardiac Na+ Channel Conformations Reveals Molecular Pathologies of Inherited Mutations , 2015, Circulation. Arrhythmia and electrophysiology.

[9]  D. Hanck,et al.  Molecular Action of Lidocaine on the Voltage Sensors of Sodium Channels , 2003, The Journal of general physiology.

[10]  J. Balser,et al.  The cardiac sodium channel: gating function and molecular pharmacology. , 2001, Journal of molecular and cellular cardiology.

[11]  C F Starmer,et al.  Proarrhythmic response to sodium channel blockade. Theoretical model and numerical experiments. , 1991, Circulation.

[12]  G. Norman Limitations of Animal Studies for Predicting Toxicity in Clinical Trials: Part 2: Potential Alternatives to the Use of Animals in Preclinical Trials. , 2020 .

[13]  Jonathan R. Silva,et al.  Molecular motions that shape the cardiac action potential: Insights from voltage clamp fluorometry. , 2016, Progress in biophysics and molecular biology.

[14]  Kristen M. Naegle,et al.  Predicting Patient Response to the Antiarrhythmic Mexiletine Based on Genetic Variation: Personalized Medicine for Long QT Syndrome , 2019, Circulation research.

[15]  S. Priori,et al.  Gene-Specific Therapy With Mexiletine Reduces Arrhythmic Events in Patients With Long QT Syndrome Type 3 , 2016, Journal of the American College of Cardiology.

[16]  B. Katzung,et al.  Antiarrhythmic agents: the modulated receptor mechanism of action of sodium and calcium channel-blocking drugs. , 1984, Annual review of pharmacology and toxicology.

[17]  N. Trayanova,et al.  A Computational Model to Predict the Effects of Class I Anti-Arrhythmic Drugs on Ventricular Rhythms , 2011, Science Translational Medicine.

[18]  M. Beato,et al.  How to impose microscopic reversibility in complex reaction mechanisms. , 2004, Biophysical journal.

[19]  B. Hille,et al.  Local anesthetics: hydrophilic and hydrophobic pathways for the drug- receptor reaction , 1977, The Journal of general physiology.

[20]  Jonathan R. Silva,et al.  Regulation of Na+ channel inactivation by the DIII and DIV voltage-sensing domains , 2017, The Journal of general physiology.

[21]  Xiaoqian Lin,et al.  A Review on Applications of Computational Methods in Drug Screening and Design , 2020, Molecules.

[22]  Jonathan R. Silva,et al.  A computationally efficient algorithm for fitting ion channel parameters , 2016, MethodsX.

[23]  E. Chaney,et al.  The use of oral mexiletine for the treatment of pain after peripheral nerve injury. , 1992, Anesthesiology.

[24]  W. Rogers,et al.  Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. , 1989, The New England journal of medicine.

[25]  Wandi Zhu,et al.  Mechanisms and models of cardiac sodium channel inactivation , 2017, Channels.

[26]  Colleen E. Clancy,et al.  Parameterization for In-Silico Modeling of Ion Channel Interactions with Drugs , 2016, PloS one.

[27]  Bertram Pitt,et al.  Effect of d-sotalol on mortality in patients with left ventricular dysfunction after recent and remote myocardial infarction , 1996, The Lancet.

[28]  C. Clancy,et al.  Using computational modeling to predict arrhythmogenesis and antiarrhythmic therapy. , 2009, Drug discovery today. Disease models.

[29]  B. Chanda,et al.  Molecular mechanism of allosteric modification of voltage-dependent sodium channels by local anesthetics , 2010, The Journal of general physiology.

[30]  C. Frank Starmer,et al.  How antiarrhythmic Drugs Increase the Rate of Sudden Cardiac Death , 2002, Int. J. Bifurc. Chaos.

[31]  M. Weir,et al.  The Cardiac Arrhythmia Suppression Trial Investigators: Preliminary Report: Effect of Encainide and Flecainide on Mortality in a Randomized Trial of Arrhythmia Suppression After Myocardial Infarction. , 1990 .

[32]  H L Greene,et al.  Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. , 1991, The New England journal of medicine.

[33]  J Jalife,et al.  Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core. , 1998, Biophysical journal.

[34]  C. Clancy,et al.  Computational approaches to understand cardiac electrophysiology and arrhythmias. , 2012, American journal of physiology. Heart and circulatory physiology.