Molecular dynamics simulation of interfacial electrolyte behaviors in nanoscale cylindrical pores

Molecular simulations have been carried out on aqueous electrolytes in cylindrical pores a few nanometers in diameter, with uncharged wall or with dispersed, discrete charges modeling silica. The results show a classical Stern layer of adsorbed counterions near the wall, and then a diffuse layer with depleted ion concentration in the interfacial region. The depletion region coincides roughly with the more ordered water structure in the interface. Examination of the interaction energy shows that hydration energy of the ions disfavors the interior, suggesting the importance of the solvent structure near the wall. Comparison with the linearized Poisson–Boltzmann theory indicates qualitative differences in the predicted interfacial behavior.

[1]  A. Adamson Physical chemistry of surfaces , 1960 .

[2]  W. Steele The interaction of gases with solid surfaces , 1974 .

[3]  J. Rasaiah,et al.  MOBILITY AND SOLVATION OF IONS IN CHANNELS , 1996 .

[4]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[5]  R. Schasfoort,et al.  Field-effect flow control for microfabricated fluidic networks , 1999, Science.

[6]  Yury Gogotsi,et al.  In situ multiphase fluid experiments in hydrothermal carbon nanotubes , 2001 .

[7]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[8]  T. W. Żerda,et al.  Properties of liquid acetone in silica pores: Molecular dynamics simulation , 1996 .

[9]  John M. Zachara,et al.  Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms. , 1999, Chemical reviews.

[10]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[11]  James W. Jorgenson,et al.  Zone electrophoresis in open-tubular glass capillaries , 1981 .

[12]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[13]  E. Spohr Molecular simulation of the electrochemical double layer , 1999 .

[14]  Uri Raviv,et al.  Fluidity of water confined to subnanometre films , 2001, Nature.

[15]  William A. Steele,et al.  The physical interaction of gases with crystalline solids: I. Gas-solid energies and properties of isolated adsorbed atoms☆ , 1973 .

[16]  H. Craighead,et al.  Separation of long DNA molecules in a microfabricated entropic trap array. , 2000, Science.

[17]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[18]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[19]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[20]  S. Jacobson,et al.  Counting single chromophore molecules for ultrasensitive analysis and separations on microchip devices. , 1998, Analytical chemistry.

[21]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[22]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .