Robust reduced-rank filtering for erratic seismic noise attenuation

ABSTRACTSingular spectrum analysis (SSA) or Cadzow reduced-rank filtering is an efficient method for random noise attenuation. SSA starts by embedding the seismic data into a Hankel matrix. Rank reduction of this Hankel matrix followed by antidiagonal averaging is utilized to estimate an enhanced seismic signal. Rank reduction is often implemented via the singular value decomposition (SVD). The SVD is a nonrobust matrix factorization technique that leads to suboptimal results when the seismic data are contaminated by erratic noise. The term erratic noise designates non-Gaussian noise that consists of large isolated events with known or unknown distribution. We adopted a robust low-rank factorization that permitted use of the SSA filter in situations in which the data were contaminated by erratic noise. In our robust SSA method, we replaced the quadratic error criterion function that yielded the truncated SVD solution by a bisquare function. The Hankel matrix was then approximated by the product of two low...

[1]  J. Tukey,et al.  The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data , 1974 .

[2]  Alexandre Bernardino,et al.  Unifying Nuclear Norm and Bilinear Factorization Approaches for Low-Rank Matrix Decomposition , 2013, 2013 IEEE International Conference on Computer Vision.

[3]  I. F. Jones,et al.  SIGNAL‐TO‐NOISE RATIO ENHANCEMENT IN MULTICHANNEL SEISMIC DATA VIA THE KARHUNEN‐LOÉVE TRANSFORM* , 1987 .

[4]  Yingbo Hua,et al.  On rank of block Hankel matrix for 2-D frequency detection and estimation , 1996, IEEE Trans. Signal Process..

[5]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[6]  S. Trickett F-xy eigenimage noise suppression , 2003 .

[7]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .

[8]  Lynn Burroughs,et al.  Robust Rank-Reduction Filtering for Erratic Noise , 2012 .

[9]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[10]  Mauricio D. Sacchi,et al.  A fast reduced-rank interpolation method for prestack seismic volumes that depend on four spatial dimensions , 2013 .

[11]  Mauricio D. Sacchi,et al.  FX Singular Spectrum Analysis , 2009 .

[12]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[13]  Nirupama Nagarajappa,et al.  Coherent Noise Estimation by Adaptive Hankel Matrix Rank Reduction , 2012 .

[14]  Sam T. Roweis,et al.  EM Algorithms for PCA and SPCA , 1997, NIPS.

[15]  Deyu Meng,et al.  Robust Matrix Factorization with Unknown Noise , 2013, 2013 IEEE International Conference on Computer Vision.

[16]  Mauricio D. Sacchi,et al.  Robust Reduced-Rank Seismic Denoising , 2013 .

[17]  Urs Niesen,et al.  Adaptive Alternating Minimization Algorithms , 2007, ISIT.

[18]  Gene H. Golub,et al.  Matrix computations , 1983 .

[19]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[20]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[21]  Victor J. Yohai,et al.  Robust Low-Rank Approximation of Data Matrices With Elementwise Contamination , 2008, Technometrics.

[22]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[23]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[24]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[25]  N. Kreimer,et al.  Tensor completion based on nuclear norm minimization for 5D seismic data reconstruction , 2013 .

[26]  S. Zamir,et al.  Lower Rank Approximation of Matrices by Least Squares With Any Choice of Weights , 1979 .

[27]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[28]  L. Canales Random Noise Reduction , 1984 .

[29]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[30]  Nickolay T. Trendafilov,et al.  A majorization algorithm for simultaneous parameter estimation in robust exploratory factor analysis , 2010, Comput. Stat. Data Anal..

[31]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[32]  Tommi S. Jaakkola,et al.  Weighted Low-Rank Approximations , 2003, ICML.

[33]  S. Freire,et al.  Eigenimage Processing of Seismic Sections , 1988 .

[34]  Vincenzo Verardi Robust principal component analysis in Stata , 2009 .

[35]  Lynn Burroughs,et al.  Prestack Rank-Reduction-Based Noise Suppression , 2009 .

[36]  Xuming He,et al.  Lower Rank Approximation of Matrices Based on Fast and Robust Alternating Regression , 2008 .

[37]  Stewart Trickett,et al.  F-xy Cadzow Noise Suppression , 2008 .

[38]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[39]  J. Claerbout,et al.  Lateral prediction for noise attenuation by t-x and f-x techniques , 1995 .

[40]  Stephen K. Chiu,et al.  Coherent and random noise attenuation via multichannel singular spectrum analysis in the randomized domain , 2013 .