Chromatin and Polycomb: Biology and bioinformatics

[1]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[2]  W. Reik,et al.  Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity , 2016, Genome Biology.

[3]  Andrew P Hutchins,et al.  Transcriptional Control of Somatic Cell Reprogramming. , 2016, Trends in cell biology.

[4]  Yaron E. Antebi,et al.  Dynamics of epigenetic regulation at the single-cell level , 2016, Science.

[5]  Olga G. Troyanskaya,et al.  Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states , 2016, Nature Communications.

[6]  Rezvan Ehsani,et al.  EpiFactors: a comprehensive database of human epigenetic factors and complexes , 2015, Database J. Biol. Databases Curation.

[7]  William Stafford Noble,et al.  Machine learning applications in genetics and genomics , 2015, Nature Reviews Genetics.

[8]  G. Ast,et al.  The alternative role of DNA methylation in splicing regulation. , 2015, Trends in genetics : TIG.

[9]  Manolis Kellis,et al.  Large-scale epigenome imputation improves data quality and disease variant enrichment , 2015, Nature Biotechnology.

[10]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[11]  V. Chechetkin,et al.  Genome-wide study of correlations between genomic features and their relationship with the regulation of gene expression , 2015, DNA research : an international journal for rapid publication of reports on genes and genomes.

[12]  Paz Polak,et al.  Cell-of-origin chromatin organization shapes the mutational landscape of cancer , 2015, Nature.

[13]  D. Haussler,et al.  The UCSC Genome Browser database: 2015 update , 2014, Nucleic Acids Res..

[14]  Peter J. Bickel,et al.  Comparative analysis of regulatory information and circuits across distant species , 2014, Nature.

[15]  Y. Hayashizaki,et al.  Interactive visualization and analysis of large-scale sequencing datasets using ZENBU , 2014 .

[16]  Virginia Savova,et al.  Chromatin signature of widespread monoallelic expression , 2013, eLife.

[17]  K. Helin,et al.  Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. , 2013, Molecular cell.

[18]  Mikhail Pachkov,et al.  Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting , 2013, Genome research.

[19]  C. Ponting,et al.  KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands , 2012, eLife.

[20]  Thomas Lengauer,et al.  EpiExplorer: live exploration and global analysis of large epigenomic datasets , 2012, Genome Biology.

[21]  William Stafford Noble,et al.  Sequence and chromatin determinants of cell-type–specific transcription factor binding , 2012, Genome research.

[22]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[23]  Dan Xie,et al.  Comparative Epigenomic Annotation of Regulatory DNA , 2012, Cell.

[24]  Andrey A. Mironov,et al.  Exploring Massive, Genome Scale Datasets with the GenometriCorr Package , 2012, PLoS Comput. Biol..

[25]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[26]  Martin Dugas,et al.  Integrative Analyses for Omics Data: A Bayesian Mixture Model to Assess the Concordance of ChIP-chip and ChIP-seq Measurements , 2012, Journal of toxicology and environmental health. Part A.

[27]  Olga G. Troyanskaya,et al.  An effective statistical evaluation of ChIPseq dataset similarity , 2012, Bioinform..

[28]  N. Brockdorff,et al.  RYBP-PRC1 Complexes Mediate H2A Ubiquitylation at Polycomb Target Sites Independently of PRC2 and H3K27me3 , 2012, Cell.

[29]  Yuval Kluger,et al.  PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. , 2012, Molecular cell.

[30]  S. Q. Xie,et al.  Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs , 2012, Cell stem cell.

[31]  Raymond K. Auerbach,et al.  Extensive Promoter-Centered Chromatin Interactions Provide a Topological Basis for Transcription Regulation , 2012, Cell.

[32]  Paul Bertone,et al.  NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression , 2011, The EMBO journal.

[33]  Giacomo Cavalli,et al.  Polycomb group proteins: repression in 3D. , 2011, Trends in genetics : TIG.

[34]  M. Frye,et al.  Regulation of human epidermal stem cell proliferation and senescence requires polycomb- dependent and -independent functions of Cbx4. , 2011, Cell stem cell.

[35]  L. D. Croce,et al.  Roles of the Polycomb group proteins in stem cells and cancer , 2011, Cell Death and Disease.

[36]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[37]  Xia Li,et al.  QDMR: a quantitative method for identification of differentially methylated regions by entropy , 2011, Nucleic acids research.

[38]  R. F. Luco,et al.  Epigenetics in Alternative Pre-mRNA Splicing , 2011, Cell.

[39]  Toshiro K. Ohsumi,et al.  Genome-wide identification of polycomb-associated RNAs by RIP-seq. , 2010, Molecular cell.

[40]  Lovelace J. Luquette,et al.  Comprehensive analysis of the chromatin landscape in Drosophila , 2010, Nature.

[41]  Guillaume J. Filion,et al.  Systematic Protein Location Mapping Reveals Five Principal Chromatin Types in Drosophila Cells , 2010, Cell.

[42]  A. Hyman,et al.  Quantitative Interaction Proteomics and Genome-wide Profiling of Epigenetic Histone Marks and Their Readers , 2010, Cell.

[43]  Yang Shi,et al.  Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. , 2010, Annual review of biochemistry.

[44]  Richard A Young,et al.  Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. , 2010, Molecular cell.

[45]  Luca Mazzarella,et al.  Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators , 2010, Nature Cell Biology.

[46]  Ming-Ming Zhou,et al.  Mechanism and Regulation of Acetylated Histone Binding by the Tandem PHD Finger of DPF3b , 2010, Nature.

[47]  O. Dovey,et al.  Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation , 2010, Proceedings of the National Academy of Sciences.

[48]  T. Kouzarides,et al.  A chromodomain switch mediated by histone H3 Lys 4 acetylation regulates heterochromatin assembly. , 2010, Genes & development.

[49]  Juri Rappsilber,et al.  JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells , 2010, Nature.

[50]  Gang Li,et al.  Jarid2 and PRC2, partners in regulating gene expression. , 2010, Genes & development.

[51]  S. Orkin,et al.  Jumonji Modulates Polycomb Activity and Self-Renewal versus Differentiation of Stem Cells , 2009, Cell.

[52]  Arend Sidow,et al.  Jarid2/Jumonji Coordinates Control of PRC2 Enzymatic Activity and Target Gene Occupancy in Pluripotent Cells , 2009, Cell.

[53]  Kristian Helin,et al.  Polycomb group proteins: navigators of lineage pathways led astray in cancer , 2009, Nature Reviews Cancer.

[54]  G. Hon,et al.  Predictive chromatin signatures in the mammalian genome. , 2009, Human molecular genetics.

[55]  J. Rinn,et al.  Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression , 2009, Proceedings of the National Academy of Sciences.

[56]  A. Shilatifard,et al.  RAD6-Mediated Transcription-Coupled H2B Ubiquitylation Directly Stimulates H3K4 Methylation in Human Cells , 2009, Cell.

[57]  T. Kutateladze,et al.  Structural insight into histone recognition by the ING PHD fingers. , 2009, Current drug targets.

[58]  S. Jackson,et al.  Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells , 2009, The EMBO journal.

[59]  Yang Shi,et al.  Epigenetic regulation: methylation of histone and non-histone proteins , 2009, Science in China Series C: Life Sciences.

[60]  Hana Kim,et al.  AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2 , 2009 .

[61]  Jinrong Min,et al.  Structure and function of histone methylation binding proteins. , 2009, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[62]  S. Clarke,et al.  Protein arginine methylation in mammals: who, what, and why. , 2009, Molecular cell.

[63]  Ann Dean,et al.  Epigenetics of beta-globin gene regulation. , 2008, Mutation research.

[64]  K. Helin,et al.  A model for transmission of the H3K27me3 epigenetic mark , 2008, Nature Cell Biology.

[65]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[66]  R. Klose,et al.  Dynamic protein methylation in chromatin biology , 2008, Cellular and Molecular Life Sciences.

[67]  Jeroen A. A. Demmers,et al.  dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during Polycomb group silencing. , 2008, Genes & development.

[68]  S. Minucci,et al.  MBD3, a Component of the NuRD Complex, Facilitates Chromatin Alteration and Deposition of Epigenetic Marks , 2008, Molecular and Cellular Biology.

[69]  Sheryl T. Smith,et al.  Association of trxG and PcG proteins with the bxd maintenance element depends on transcriptional activity , 2008, Development.

[70]  Michael Q. Zhang,et al.  Combinatorial patterns of histone acetylations and methylations in the human genome , 2008, Nature Genetics.

[71]  E. Seto,et al.  The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men , 2008, Nature Reviews Molecular Cell Biology.

[72]  D. Reinberg,et al.  Ezh2 Requires PHF1 To Efficiently Catalyze H3 Lysine 27 Trimethylation In Vivo , 2008, Molecular and Cellular Biology.

[73]  Ping Zhu,et al.  Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. , 2008, Molecular cell.

[74]  Laurence Florens,et al.  Histone Crosstalk between H2B Monoubiquitination and H3 Methylation Mediated by COMPASS , 2007, Cell.

[75]  Haruhiko Koseki,et al.  Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells , 2007, Nature Cell Biology.

[76]  D. Reinberg,et al.  Facultative heterochromatin: is there a distinctive molecular signature? , 2007, Molecular cell.

[77]  Matthias Mann,et al.  Selective Anchoring of TFIID to Nucleosomes by Trimethylation of Histone H3 Lysine 4 , 2007, Cell.

[78]  E. Seto,et al.  HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention , 2007, Oncogene.

[79]  R. Marmorstein,et al.  Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design , 2007, Oncogene.

[80]  S. Mujtaba,et al.  Structure and acetyl-lysine recognition of the bromodomain , 2007, Oncogene.

[81]  M. Parthun Hat1: the emerging cellular roles of a type B histone acetyltransferase , 2007, Oncogene.

[82]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[83]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[84]  Anne H. O'Donnell,et al.  Hyperconserved CpG domains underlie Polycomb-binding sites , 2007, Proceedings of the National Academy of Sciences.

[85]  Yi Zhang,et al.  Regulation of histone methylation by demethylimination and demethylation , 2007, Nature Reviews Molecular Cell Biology.

[86]  T. Kouzarides Chromatin Modifications and Their Function , 2007, Cell.

[87]  R. King,et al.  Cell biology: Nondisjunction, aneuploidy and tetraploidy (Reply) , 2006, Nature.

[88]  Anjanabha Saha,et al.  ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression , 2006, Nature.

[89]  Yi Zhang,et al.  Recognition of Histone H3 Lysine-4 Methylation by the Double Tudor Domain of JMJD2A , 2006, Science.

[90]  Yang Shi,et al.  Reversal of Histone Lysine Trimethylation by the JMJD2 Family of Histone Demethylases , 2006, Cell.

[91]  Richard Bourgon,et al.  Genome-wide analysis of Polycomb targets in Drosophila melanogaster , 2006, Nature Genetics.

[92]  Yi Zhang,et al.  Tudor, MBT and chromo domains gauge the degree of lysine methylation , 2006, EMBO reports.

[93]  H. Erdjument-Bromage,et al.  Histone demethylation by a family of JmjC domain-containing proteins , 2006, Nature.

[94]  Danny Reinberg,et al.  Human but Not Yeast CHD1 Binds Directly and Selectively to Histone H3 Methylated at Lysine 4 via Its Tandem Chromodomains* , 2005, Journal of Biological Chemistry.

[95]  Yi Zhang,et al.  Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. , 2005, Molecular cell.

[96]  Tony Kouzarides,et al.  Spatial Distribution of Di- and Tri-methyl Lysine 36 of Histone H3 at Active Genes* , 2005, Journal of Biological Chemistry.

[97]  Yang Shi,et al.  Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1 , 2004, Cell.

[98]  R. Kingston,et al.  Chromatin Compaction by a Polycomb Group Protein Complex , 2004, Science.

[99]  M. Vidal,et al.  Role of histone H2A ubiquitination in Polycomb silencing , 2004, Nature.

[100]  C. Allis,et al.  Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa , 2003, Nature Genetics.

[101]  N. Brockdorff,et al.  Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. , 2003, Developmental cell.

[102]  Hengbin Wang,et al.  Role of Histone H3 Lysine 27 Methylation in X Inactivation , 2003, Science.

[103]  Geoff Kelly,et al.  Structure and catalytic mechanism of the human histone methyltransferase SET7/9 , 2003, Nature.

[104]  Sebastian Maurer-Stroh,et al.  The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. , 2003, Trends in biochemical sciences.

[105]  J. Workman,et al.  Function and Selectivity of Bromodomains in Anchoring Chromatin-Modifying Complexes to Promoter Nucleosomes , 2002, Cell.

[106]  Andrew J. Bannister,et al.  Histone Methylation Dynamic or Static? , 2002, Cell.

[107]  David M. Livingston,et al.  A Complex with Chromatin Modifiers That Occupies E2F- and Myc-Responsive Genes in G0 Cells , 2002, Science.

[108]  Tony Kouzarides,et al.  Histone H3 Lysine 4 Methylation Disrupts Binding of Nucleosome Remodeling and Deacetylase (NuRD) Repressor Complex* , 2002, The Journal of Biological Chemistry.

[109]  D. Reinberg,et al.  Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. , 2002, Genes & development.

[110]  Andrew J. Bannister,et al.  Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain , 2001, Nature.

[111]  Karl Mechtler,et al.  Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins , 2001, Nature.

[112]  C. Ponting,et al.  Regulation of chromatin structure by site-specific histone H3 methyltransferases , 2000, Nature.

[113]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[114]  R Ohba,et al.  Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. , 1997, Genes & development.

[115]  A. Varshavsky,et al.  Selective arrangement of ubiquitinated and D1 protein-containing nucleosomes within the drosophila genome , 1982, Cell.

[116]  A. Mirsky,et al.  ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[117]  N. Brockdorff,et al.  The interplay of histone modifications – writers that read , 2015, EMBO reports.

[118]  Martin Renqiang Min,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[119]  Tony Kouzarides,et al.  Histone H3 lysine 4 methylation patterns in higher eukaryotic genes , 2004, Nature Cell Biology.