Comparison of High-Cloud Characteristics as Estimated by Selected Spaceborne Observations and Ground-Based Lidar Datasets

Abstract The characterization of high clouds as performed from selected spaceborne observations is assessed in this article by employing a number of worldwide ground-based lidar multiyear datasets as reference. Among the latter, the ground lidar observations conducted at Lannion, Bretagne (48.7°N, 3.5°W), and Palaiseau, near Paris [the Site Instrumental de Recherche par Teledetection Atmospherique (SIRTA) observatory: 48.7°N, 2.2°E], both in France, are discussed in detail. High-cloud altitude statistics at these two sites were found to be similar. Optical thicknesses disagree, and possible reasons were analyzed. Despite the variety of instruments, observation strategies, and methods of analysis employed by different lidar groups, high-cloud optical thicknesses from the Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESat) were found to be consistent on the latitude band 40°–60°N. Respective high-cloud altitudes agree within 1 km with respect to those from ...

[1]  K. Satheesan,et al.  Lidar observations of high altitude cirrus clouds near the tropical tropopause , 2004 .

[2]  A. C. Dilley,et al.  Remote Sounding of High Clouds. Part VI: Optical Properties of Midlatitude and Tropical Cirrus , 1987 .

[3]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[4]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[5]  J. Abshire,et al.  Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: On‐orbit measurement performance , 2005 .

[6]  Lidar observations of cirrus cloud near the tropical tropopause: general features , 2003 .

[7]  K. Sassen,et al.  The 27-28 October 1986 FIRE IFO cirrus case study - A five lidar overview of cloud structure and evolution , 1990 .

[8]  J. Spinhirne,et al.  Aerosol and cloud optical depth from GLAS: Results and verification for an October 2003 California fire smoke case , 2005 .

[9]  Midlatitude cirrus clouds and multiple tropopauses from a 2002–2006 climatology over the SIRTA observatory , 2007, 0705.2517.

[10]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[11]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[12]  Lidar observations of equatorial cirrus clouds at Mahé Seychelles , 2003 .

[13]  S. Bony,et al.  SIRTA, a ground-based atmospheric observatory for cloud and aerosol research , 2005 .

[14]  Tatsuya Yokota,et al.  Characteristics of cirrus clouds from ICESat/GLAS observations , 2007 .

[15]  O. Schrems,et al.  LIDAR measurements of cirrus clouds in the northern and southern midlatitudes during INCA (55°N, 53°S): A comparative study , 2002 .

[16]  Kenneth Sassen,et al.  Cloud Type and Macrophysical Property Retrieval Using Multiple Remote Sensors , 2001 .

[17]  R. Imasu,et al.  Characteristics of Cirrus Clouds Observed by Laser Radar (Lidar) during the Spring of 1987 and the W , 1991 .

[18]  J. Nee,et al.  Lidar ratio and depolarization ratio for cirrus clouds. , 2002, Applied optics.

[19]  James H. Churnside,et al.  The Optical Properties of Equatorial Cirrus from Observations in the ARM Pilot Radiation Observation Experiment , 1998 .

[20]  P. Keckhut,et al.  A sub‐tropical cirrus clouds climatology from Reunion Island (21°S, 55°E) lidar data set , 2003 .

[21]  Claudia J. Stubenrauch,et al.  Characteristics of the TOVS Pathfinder Path-B Dataset , 1999 .

[22]  K. Sassen,et al.  Cirrus Cloud Microphysical Property Retrieval Using Lidar and Radar Measurements. Part II: Midlatitude Cirrus Microphysical and Radiative Properties , 2002 .

[23]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[24]  J. Spinhirne,et al.  Cloud and aerosol measurements from GLAS: Overview and initial results , 2005 .

[25]  High-Altitude Cloud Effects on Airborne Electro-Optical Sensor Performance , 2006 .

[26]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[27]  Claudia J. Stubenrauch,et al.  Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part III: Spatial Heterogeneity and Radiative Effects , 1999 .

[28]  H. Zwally,et al.  Overview of the ICESat Mission , 2005 .

[29]  O. Schrems,et al.  Dual wavelength lidar observation of tropical high‐altitude cirrus clouds during the ALBATROSS 1996 Campaign , 1998 .

[30]  G. S. Kent,et al.  Scientific investigations planned for the lidar in-space technology experiment (LITE) , 1993 .

[31]  Markus Quante,et al.  A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part V Cloud structural properties , 2007 .

[32]  Claudia J. Stubenrauch,et al.  Cloud heights from TOVS Path‐B: Evaluation using LITE observations and distributions of highest cloud layers , 2005 .

[33]  Kenneth Sassen,et al.  Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays. , 2003, Applied optics.

[34]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[35]  Optical and geometrical properties of northern midlatitude cirrus clouds observed with a UV Raman lidar , 1999 .

[36]  Otto Schrems,et al.  Determination of tropical cirrus properties by simultaneous LIDAR and radiosonde measurements , 2002 .

[37]  V. Noel,et al.  Extinction coefficients retrieved in deep tropical ice clouds from lidar observations using a CALIPSO-like algorithm compared to in-situ measurements from the cloud integrating nephelometer during CRYSTAL-FACE , 2006 .

[38]  C. Platt,et al.  Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns. , 1981 .

[39]  Philippe Keckhut,et al.  Improved retrievals of the optical properties of cirrus clouds by a combination of lidar methods. , 2005, Applied optics.

[40]  Ping Yang,et al.  The Distribution of Tropical Thin Cirrus Clouds Inferred from Terra MODIS Data , 2003 .

[41]  Stuart A. Young,et al.  LIRAD Observations of Tropical Cirrus Clouds in MCTEX. Part I: Optical Properties and Detection of Small Particles in Cold Cirrus* , 2002 .

[42]  David M. Winker,et al.  The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research , 1994 .

[43]  F. Borchi,et al.  Cirrus Classification at Midlatitude from Systematic Lidar Observations , 2006 .

[44]  J. Comstock,et al.  Ground‐based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts , 2002 .

[45]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[46]  Understanding Satellite Cirrus Cloud Climatologies with Calibrated Lidar Optical Depths , 1995 .

[47]  Lidar network observations of cirrus morphological and scattering properties during the International Cirrus Experiment 1989 : the 18 October 1989 case study and statistical analysis , 1993 .

[48]  Jacques Pelon,et al.  STRAT: An Automated Algorithm to Retrieve the Vertical Structure of the Atmosphere from Single-Channel Lidar Data , 2007 .

[49]  J. Pelon,et al.  Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. , 2001, Applied optics.

[50]  A. Chédin,et al.  Clouds as Seen by Satellite Sounders (3I) and Imagers (ISCCP). Part II: A New Approach for Cloud Parameter Determination in the 3I Algorithms , 1999 .

[51]  Claudia J. Stubenrauch,et al.  Cloud properties from Atmospheric Infrared Sounder and evaluation with Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations , 2008 .

[52]  Gian Paolo Gobbi,et al.  The vertical distribution of aerosols, Saharan dust and cirrus clouds in Rome (Italy) in the year 2001 , 2003 .

[53]  S. Young,et al.  Analysis of lidar backscatter profiles in optically thin clouds. , 1995, Applied optics.

[54]  Otto Schrems,et al.  A Lidar and Backscatter Sonde Measurement Campaign at Table Mountain during February–March 1997: Observations of Cirrus Clouds , 2001 .

[55]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[56]  Albert Ansmann,et al.  Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol‐polluted northeast and clean maritime southwest monsoon , 2007 .

[57]  Alain Hauchecorne,et al.  Cirrus climatological results from lidar measurements at OHP (44°N, 6°E) , 2001 .

[58]  Cirrus Measurements with a Raman LIDAR Over Thessaloniki, Greece during Earlinet , 2004 .

[59]  Leopoldo Stefanutti,et al.  One year of cloud lidar data from Dumont d'Urville (Antarctica): 1. General overview of geometrical and optical properties , 1993 .

[60]  W. Menzel,et al.  Four Years of Global Cirrus Cloud Statistics Using HIRS, Revised , 1994 .

[61]  Claudia J. Stubenrauch,et al.  Cloud Properties and Their Seasonal and Diurnal Variability from TOVS Path-B , 2006 .

[62]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[63]  David M. Winker,et al.  Vertical distribution of clouds over Hampton, Virginia observed by lidar under the ECLIPS and FIRE ETO programs , 1994 .

[64]  Gerald G. Mace,et al.  Cloud and Aerosol Research Capabilities at FARS: The Facility for Atmospheric Remote Sensing. , 2001 .

[65]  K. Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and Synoptic Properties , 2001 .

[66]  D. Whiteman,et al.  Subtropical cirrus cloud extinction to backscatter ratios measured by Raman Lidar during CAMEX‐3 , 2004 .

[67]  G. McFarquhar,et al.  Thin and Subvisual Tropopause Tropical Cirrus: Observations and Radiative Impacts , 2000 .

[68]  Chris Snyder,et al.  The Fronts and Atlantic Storm-Track Experiment (FASTEX) : Scientific objectives and experimental design , 1997 .

[69]  A. C. Dilley,et al.  Remote Sounding of High Clouds: II. Emissivity of Cirrostratus , 1979 .

[70]  D. Winker,et al.  Laminar cirrus observed near the tropical tropopause by LITE , 1998 .