A new derivative concept for set-valued and fuzzy-valued functions. Differential and integral calculus in quasilinear metric spaces

Abstract The aim of this paper is to develop a differential calculus for functions with values in a quasilinear metric space. Using only the metric on a quasilinear metric space and without using the Hukuhara difference, a new concept of derivative is introduced for functions with values in a quasilinear metric space. This new derivative concept generalizes known concepts of derivatives for set-valued and fuzzy value functions.

[1]  Rosana Rodríguez-López On the existence of solutions to periodic boundary value problems for fuzzy linear differential equations , 2013, Fuzzy Sets Syst..

[2]  Andrej V. Plotnikov,et al.  Differentiation of Multivalued Mappings. T-Derivative , 2000 .

[3]  Svetoslav Markov,et al.  On quasilinear spaces of convex bodies and intervals , 2004 .

[4]  Marek T. Malinowski,et al.  Second type Hukuhara differentiable solutions to the delay set-valued differential equations , 2012, Appl. Math. Comput..

[5]  Estevão Esmi,et al.  Calculus for linearly correlated fuzzy function using Fréchet derivative and Riemann integral , 2020, Inf. Sci..

[6]  H. Rådström An embedding theorem for spaces of convex sets , 1952 .

[7]  Hung T. Nguyen,et al.  A note on the extension principle for fuzzy sets , 1978 .

[8]  H. Ratschek,et al.  Representation of semigroups as systems of compact convex sets , 1977 .

[9]  M. Puri,et al.  Differentials of fuzzy functions , 1983 .

[10]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[11]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[12]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[13]  Russell Gordon Survey Article Riemann Integration in Banach Spaces , 1991 .

[14]  Osmo Kaleva Fuzzy differential equations , 1987 .

[15]  Yurilev Chalco-Cano,et al.  Calculus for interval-valued functions using generalized Hukuhara derivative and applications , 2013, Fuzzy Sets Syst..

[16]  Otto Mayer,et al.  Algebraische und metrische Strukturen in der Intervallrechnung und einige Anwendungen , 1970, Computing.

[17]  G. C. Shephard,et al.  Normed vector spaces consisting of classes of convex sets , 1965 .

[18]  Juan J. Nieto,et al.  Linear First-Order Fuzzy Differential Equations , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  R. Goetschel,et al.  Elementary fuzzy calculus , 1986 .

[20]  J. Nieto,et al.  A boundary value problem for second order fuzzy differential equations , 2010 .

[21]  Vasile Lupulescu,et al.  Hukuhara differentiability of interval-valued functions and interval differential equations on time scales , 2013, Inf. Sci..

[22]  Klaus D. Schmidt Embedding Theorems for Cones and Applications to Classes of Convex Sets Occurring in Interval Mathematics , 1985, Interval Mathematics.

[23]  Barnabás Bede,et al.  Mathematics of Fuzzy Sets and Fuzzy Logic , 2012, Studies in Fuzziness and Soft Computing.

[24]  Vasile Lupulescu,et al.  Fractional calculus for interval-valued functions , 2015, Fuzzy Sets Syst..

[25]  V LUPULESCU Initial value problem for fuzzy differential equations under dissipative conditions , 2008, Inf. Sci..

[26]  Vasile Lupulescu,et al.  On a class of fuzzy functional differential equations , 2009, Fuzzy Sets Syst..

[27]  Svetoslav Markov,et al.  On the algebraic properties of convex bodies and some applications. , 2000 .

[28]  Marek T. Malinowski,et al.  On set differential equations in Banach spaces - a second type Hukuhara differentiability approach , 2012, Appl. Math. Comput..

[29]  S. Seikkala On the fuzzy initial value problem , 1987 .

[30]  Svetoslav Markov,et al.  Calculus for interval functions of a real variable , 1979, Computing.

[31]  Estevão Laureano Esmi,et al.  Fréchet derivative for linearly correlated fuzzy function , 2018, Inf. Sci..

[32]  R. E. Worth Boundaries of semilinear spaces and semialgebras , 1970 .

[33]  G. Godini On normed almost linear spaces , 1988 .

[34]  Marek T. Malinowski,et al.  Interval differential equations with a second type Hukuhara derivative , 2011, Appl. Math. Lett..

[35]  M. Puri,et al.  Fuzzy Random Variables , 1986 .

[36]  D. Pompeiu,et al.  Sur la continuité des fonctions de variables complexes , 1905 .

[37]  Luciano Stefanini,et al.  Some notes on generalized Hukuhara differentiability of interval-valued functions and interval differential equations , 2012 .

[38]  Naser Pariz,et al.  Granular Differentiability of Fuzzy-Number-Valued Functions , 2018, IEEE Transactions on Fuzzy Systems.

[39]  João B. Prolla Approximation of continuous convex-cone-valued functions by monotone operators , 1992 .

[40]  G. Debreu Integration of correspondences , 1967 .

[41]  T. F. Bridgland Trajectory integrals of set valued functions. , 1970 .

[42]  F. S. De Blasi,et al.  On the differentiability of multifunctions , 1976 .

[43]  Barnabás Bede,et al.  Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations , 2005, Fuzzy Sets Syst..

[44]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[45]  M. Hukuhara INTEGRATION DES APPLICAITONS MESURABLES DONT LA VALEUR EST UN COMPACT CONVEXE , 1967 .

[46]  P. Kloeden,et al.  Metric spaces of fuzzy sets , 1990 .

[47]  George Galanis Differentiability on semilinear spaces , 2009 .

[48]  Juan J. Nieto,et al.  NUMERICAL SOLUTION OF FUZZY DIFFERENTIAL EQUATIONS UNDER GENERALIZED DIFFERENTIABILITY , 2009 .

[49]  S. Fomin,et al.  Measure, Lebesgue integrals, and Hilbert space , 1961 .

[50]  Tofigh Allahviranloo,et al.  Toward the existence and uniqueness of solutions of second-order fuzzy differential equations , 2009, Inf. Sci..

[51]  V. Lakshmikantham,et al.  Theory of Set Differential Equations in Metric Spaces , 2005 .

[52]  Yurilev Chalco-Cano,et al.  Generalized derivative and π-derivative for set-valued functions , 2011, Inf. Sci..

[53]  Jinxian Li,et al.  The Cauchy problem of fuzzy differential equations under generalized differentiability , 2012, Fuzzy Sets Syst..

[54]  Juan J. Nieto,et al.  Variation of constant formula for first order fuzzy differential equations , 2011, Fuzzy Sets Syst..

[55]  Rosana Rodríguez-López,et al.  Comparison results for fuzzy differential equations , 2008, Inf. Sci..

[56]  Luciano Stefanini,et al.  A generalization of Hukuhara difference and division for interval and fuzzy arithmetic , 2010, Fuzzy Sets Syst..

[57]  Dan Tiba,et al.  One Hundred Years Since the Introduction of the Set Distance by Dimitrie Pompeiu , 2005, System Modelling and Optimization.

[58]  G. Schröder,et al.  Differentiation of interval functions , 1972 .

[59]  J. Nieto,et al.  FUZZY DIFFERENTIAL SYSTEMS UNDER GENERALIZED METRIC SPACES APPROACH , 2008 .

[60]  A. Hamel,et al.  Variational principles on metric and uniform spaces , 2005 .

[61]  Stanisław Saks,et al.  Theory of the Integral , 2011 .

[62]  H. Banks,et al.  A Differential Calculus for Multifunctions , 1970 .

[63]  Marek T. Malinowski,et al.  Interval Cauchy problem with a second type Hukuhara derivative , 2012, Inf. Sci..

[64]  S. Cobzas,et al.  Functional Analysis in Asymmetric Normed Spaces , 2012 .