All-Dielectric Colored Metasurfaces with Silicon Mie Resonators.

The photonic resonances hosted by nanostructures provide vivid colors that can be used as color filters instead of organic colors and pigments in photodetectors and printing technology. Metallic nanostructures have been widely studied due to their ability to sustain surface plasmons that resonantly interact with light. Most of the metallic nanoparticles behave as point-like electric multipoles. However, the needs of an another degree of freedom to tune the color of the photonic nanostructure together with the use of a reliable and cost-effective material are growing. Here, we report a technique to imprint colored images based on silicon nanoparticles that host low-order electric and magnetic Mie resonances. The interplay between the electric and magnetic resonances leads to a large palette of colors. This all-dielectric fabrication technique offers the advantage to use cost-effective, reliable, and sustainable materials to provide vivid color spanning the whole visible spectrum. The interest and potential of this all-dielectric printing technique are highlighted by reproducing at a micrometer scale a Mondrian painting.

[1]  Jonathan M Cooper,et al.  Dual Color Plasmonic Pixels Create a Polarization Controlled Nano Color Palette. , 2016, ACS nano.

[2]  Wei Li,et al.  Large-Scale All-Dielectric Metamaterial Perfect Reflectors , 2015 .

[3]  Andrey E. Miroshnichenko,et al.  Generalized Brewster effect in dielectric metasurfaces , 2015, Nature Communications.

[4]  R. Wootton,et al.  Structural colour: Now you see it — now you don't , 2001, Nature.

[5]  Spencer Kellis,et al.  Electronic color charts for dielectric films on silicon. , 2004, Optics express.

[6]  J. Gooding,et al.  Optical Manipulation and Spectroscopy Of Silicon Nanoparticles Exhibiting Dielectric Resonances. , 2016, Nano letters.

[7]  P. Nordlander,et al.  Fano Resonant Aluminum Nanoclusters for Plasmonic Colorimetric Sensing. , 2015, ACS nano.

[8]  Benjamin Gallinet,et al.  Color Rendering Plasmonic Aluminum Substrates with Angular Symmetry Breaking. , 2015, ACS nano.

[9]  Cheng-Wei Qiu,et al.  Plasmonic color palettes for photorealistic printing with aluminum nanostructures. , 2014, Nano letters.

[10]  Andrey E. Miroshnichenko,et al.  Magnetic light , 2012, Scientific reports.

[11]  Mohsen Rahmani,et al.  Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion , 2015, Nature Communications.

[12]  D. Choi,et al.  Subtractive Color Filters Based on a Silicon-Aluminum Hybrid-Nanodisk Metasurface Enabling Enhanced Color Purity , 2016, Scientific Reports.

[13]  Boris N. Chichkov,et al.  Generation and patterning of Si nanoparticles by femtosecond laser pulses , 2014 .

[14]  J. Aizpurua,et al.  Dielectric antennas--a suitable platform for controlling magnetic dipolar emission. , 2012, Optics express.

[15]  Jeremy B. Wright,et al.  Optical magnetic mirrors without metals , 2014, 1403.1308.

[16]  Cheng Zhang,et al.  Angle-Insensitive Structural Colours based on Metallic Nanocavities and Coloured Pixels beyond the Diffraction Limit , 2012, Scientific Reports.

[17]  Boris Luk'yanchuk,et al.  Magnetic and electric hotspots with silicon nanodimers. , 2015, Nano letters.

[18]  Joel K. W. Yang,et al.  Large Area Plasmonic Color Palettes with Expanded Gamut Using Colloidal Self-Assembly , 2016 .

[19]  D. Poulikakos,et al.  Full-Spectrum Flexible Color Printing at the Diffraction Limit , 2016, 1609.08153.

[20]  Nicky Dean Colouring at the nanoscale. , 2015, Nature nanotechnology.

[21]  Ann Roberts,et al.  The Plasmonic Pixel: Large Area, Wide Gamut Color Reproduction Using Aluminum Nanostructures. , 2016, Nano letters.

[22]  B. Chichkov,et al.  Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. , 2012, Nano letters.

[23]  Lukas Novotny,et al.  Demonstration of zero optical backscattering from single nanoparticles. , 2012, Nano letters.

[24]  A. Miroshnichenko All-dielectric optical nanoantennas , 2012, 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting.

[25]  H. Rigneault,et al.  All-Dielectric Silicon Nanogap Antennas To Enhance the Fluorescence of Single Molecules. , 2016, Nano letters (Print).

[26]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[27]  Ole Albrektsen,et al.  Subwavelength plasmonic color printing protected for ambient use. , 2014, Nano letters.

[28]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[29]  Li Zhu,et al.  Flexible photonic metastructures for tunable coloration , 2015 .

[30]  Nicolas Bonod,et al.  Silicon photonics: Large-scale dielectric metasurfaces. , 2015, Nature materials.

[31]  K. Crozier,et al.  Vividly-colored silicon metasurface based on collective electric and magnetic resonances , 2015, 2015 11th Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[32]  Huigao Duan,et al.  Printing colour at the optical diffraction limit. , 2012, Nature nanotechnology.

[33]  Carl V. Thompson,et al.  Solid-state dewetting of patterned thin films , 2009 .

[34]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[35]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[36]  Ravi S. Hegde,et al.  Colour at the Optical Diffraction Limit , 2012 .

[37]  N. Bonod,et al.  Chemical Alkaline Etching of Silicon Mie Particles , 2015 .

[38]  Joann M. Taylor,et al.  Digital Color Imaging Handbook , 2004 .

[39]  Nicolas Bonod,et al.  Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. , 2012, Optics express.

[40]  N. Bonod,et al.  Tailoring the chirality of light emission with spherical Si-based antennas. , 2016, Nanoscale.

[41]  Anders Kristensen,et al.  Plasmonic metasurfaces for coloration of plastic consumer products. , 2014, Nano letters.

[42]  J. Fluitman,et al.  A survey on the reactive ion etching of silicon in microtechnology , 1996 .

[43]  Hyunsung Park,et al.  Filter-free image sensor pixels comprising silicon nanowires with selective color absorption. , 2014, Nano letters.

[44]  Gaurav Sharma Digital Color Imaging Handbook , 2002 .

[45]  Benjamin Vial,et al.  Wafer scale formation of monocrystalline silicon-based Mie resonators via silicon-on-insulator dewetting. , 2014, ACS nano.

[46]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[47]  N. Bonod,et al.  Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum , 2016, Scientific Reports.

[48]  S Enoch,et al.  Morpho butterflies wings color modeled with lamellar grating theory. , 2001, Optics express.

[49]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[50]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[51]  B. Chichkov,et al.  Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses , 2014, Nature Communications.

[52]  Boris N. Chichkov,et al.  Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation , 2011 .

[53]  Junpeng Guo,et al.  Silicon colors: spectral selective perfect light absorption in single layer silicon films on aluminum surface and its thermal tunability. , 2014, Optics express.

[54]  Andrey E. Miroshnichenko,et al.  Directional visible light scattering by silicon nanoparticles , 2012, Nature Communications.

[55]  Nicolas Bonod,et al.  Promoting Magnetic Dipolar Transition in Trivalent Lanthanide Ions with Lossless Mie Resonances , 2012 .

[56]  N. Bonod,et al.  Purcell factor of spherical Mie resonators , 2015 .

[57]  M. H. Brill,et al.  How the CIE 1931 color-matching functions were derived from Wright-Guild data , 1997 .