Missile target accuracy estimation with importance splitting

Missile safety takes a more and more important place in the design and the evaluation of a missile. For that purpose, missile performance collateral damages can be characterised with rare quantiles around the missile target. Usual methods like Monte Carlo simulations are unfortunately not efficient to estimate rare quantiles. Consequently, we propose to apply an advanced method of rare event estimation called importance splitting to decrease the quantile relative error. We show the performance of this algorithm on a realistic missile case.

[1]  Rudy Pastel,et al.  An overview of importance splitting for rare event simulation , 2010 .

[2]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[3]  Min-Jea Tahk,et al.  Missile guidance using neural networks , 1997 .

[4]  Reuven Y. Rubinstein,et al.  Rare event estimation for static models via cross-entropy and importance sampling , 2003 .

[5]  P. Glynn IMPORTANCE SAMPLING FOR MONTE CARLO ESTIMATION OF QUANTILES , 2011 .

[6]  T. Zajic,et al.  Splitting for rare event simulation: analysis of simple cases , 1996, Proceedings Winter Simulation Conference.

[7]  Mark Denny,et al.  Introduction to importance sampling in rare-event simulations , 2001 .

[8]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[9]  Doyle Knight,et al.  Aerodynamic Optimization of the Aeropropulsive System of a Ramjet Powered Missile , 2002 .

[10]  Laurent Daudeville,et al.  Penetration prediction of missiles with different nose shapes by the discrete element numerical approach , 2008 .

[11]  Dirk P. Kroese,et al.  Generalized Cross-entropy Methods with Applications to Rare-event Simulation and Optimization , 2007, Simul..

[12]  G. A. Mikhailov Parametric Estimates by the Monte Carlo Method , 1999 .

[13]  Arnaud Guyader,et al.  ADAPTIVE PARTICLE TECHNIQUES AND RARE EVENT ESTIMATION , 2007 .

[14]  Agnès Lagnoux,et al.  RARE EVENT SIMULATION , 2005, Probability in the Engineering and Informational Sciences.

[15]  P. Moral,et al.  Rare event simulation for a static distribution , 2009 .

[16]  Jim W. Hall,et al.  Uncertainty-based sensitivity indices for imprecise probability distributions , 2006, Reliab. Eng. Syst. Saf..

[17]  Ping Zhang Nonparametric Importance Sampling , 1996 .

[18]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[19]  Jérôme Morio,et al.  Importance sampling: how to approach the optimal density? , 2010 .

[20]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[21]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[22]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[23]  Reuven Y. Rubinstein,et al.  Optimization of computer simulation models with rare events , 1997 .

[24]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[25]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[26]  Bruno Tuffin,et al.  Splitting for rare-event simulation , 2006, WSC.

[27]  F. Cérou,et al.  Adaptive Multilevel Splitting for Rare Event Analysis , 2007 .

[28]  Francis Sullivan,et al.  The importance of importance sampling , 1999, Comput. Sci. Eng..

[29]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[30]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[31]  P. Borcherds Importance sampling: an illustrative introduction , 2000 .

[32]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .