Polarity-induced oxygen vacancies at LaAlO3∕SrTiO3 interfaces
暂无分享,去创建一个
Using first-principles density-functional-theory calculations, we find a strong position and thickness dependence of the formation energy of oxygen vacancies in LaAlO3∣SrTiO3 (LAO∣STO) multilayers and interpret this with an analytical capacitor model. Oxygen vacancies are preferentially formed at p-type SrO∣AlO2 rather than at n-type LaO∣TiO2 interfaces; the excess electrons introduced by the oxygen vacancies reduce their energy by moving to the n-type interface. This asymmetric behavior makes an important contribution to the conducting (insulating) nature of n-type (p-type) interfaces while providing a natural explanation for the failure to detect evidence for the polar catastrophe in the form of core level shifts