Critical point estimation and long-range behavior in the one-dimensional XY model using thermal quantum and total correlations

Abstract We investigate the thermal quantum and total correlations in the anisotropic XY spin chain in transverse field. While we adopt concurrence and geometric quantum discord to measure quantum correlations, we use measurement-induced non-locality and an alternative quantity defined in terms of Wigner–Yanase information to quantify total correlations. We show that the ability of these measures to estimate the critical point at finite temperature strongly depend on the anisotropy parameter of the Hamiltonian. We also identify a correlation measure which detects the factorized ground state in this model. Furthermore, we study the effect of temperature on long-range correlations.

[1]  Gerhard Müller,et al.  Antiferromagnetic long-range order in the anisotropic quantum spin chain , 1982 .

[2]  Thiago R. de Oliveira,et al.  Bell inequalities and entanglement at quantum phase transitions in theXXZmodel , 2012 .

[3]  Gustavo Rigolin,et al.  Spotlighting quantum critical points via quantum correlations at finite temperatures , 2011 .

[4]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[5]  Liu Yanchao,et al.  Thermal quantum and classical correlations and entanglement in the XY spin model with three-spin interaction , 2011 .

[6]  Eytan Barouch,et al.  Statistical Mechanics of the XY Model. III , 1970 .

[7]  P. Giorda,et al.  Quantum discord and classical correlations in the bond-charge Hubbard model: Quantum phase transitions, off-diagonal long-range order, and violation of the monogamy property for discord , 2011, 1110.6381.

[8]  Animesh Datta,et al.  Quantum discord and the power of one qubit. , 2007, Physical review letters.

[9]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[10]  Davide Girolami,et al.  Observable measure of bipartite quantum correlations. , 2011, Physical review letters.

[11]  T. Paterek,et al.  The classical-quantum boundary for correlations: Discord and related measures , 2011, 1112.6238.

[12]  M. S. Sarandy,et al.  Global quantum discord in multipartite systems , 2011, 1105.2548.

[13]  S. M. Zhao,et al.  Geometric discord approach to quantum phase transition in the anisotropy XY spin model , 2012 .

[14]  Eytan Barouch,et al.  Statistical Mechanics of the X Y Model. II. Spin-Correlation Functions , 1971 .

[15]  Č. Brukner,et al.  Necessary and sufficient condition for nonzero quantum discord. , 2010, Physical review letters.

[16]  F. Traversa,et al.  Two-point versus multipartite entanglement in quantum phase transitions. , 2005, Physical review letters.

[17]  D A Lidar,et al.  Quantum phase transitions and bipartite entanglement. , 2004, Physical review letters.

[18]  M. S. Sarandy Classical correlation and quantum discord in critical systems , 2009, 0905.1347.

[19]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[20]  G. Rigolin,et al.  Quantum correlations in spin chains at finite temperatures and quantum phase transitions. , 2010, Physical review letters.

[21]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[22]  H. Fan,et al.  Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model , 2010, 1004.5185.

[23]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[24]  E. Knill,et al.  Power of One Bit of Quantum Information , 1998, quant-ph/9802037.

[25]  Yan-shen Wang,et al.  Quantum correlations in a long range interaction spin chain , 2012 .

[26]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[28]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[29]  Witnessing nonclassical multipartite states , 2011, 1108.4001.

[30]  Quantum and classical correlations in the one-dimensional XY model with Dzyaloshinskii-Moriya interaction , 2010, 1012.2788.

[31]  Raoul Dillenschneider,et al.  Quantum discord and quantum phase transition in spin chains , 2008, 0809.1723.

[32]  R. Eryigit,et al.  Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems , 2012, 1202.1495.

[33]  Shuangshuang Fu,et al.  Measurement-induced nonlocality. , 2011, Physical review letters.

[34]  C. H. Oh,et al.  Quantifying correlations via the Wigner-Yanase skew information , 2012 .

[35]  R. M. Serra,et al.  Quantum and classical thermal correlations in the XY spin-(1/2) chain , 2010, 1002.3906.

[36]  M. S. Sarandy,et al.  Quantum Discord in the Ground State of Spin Chains , 2012, 1208.4817.

[37]  G. Rigolin,et al.  Symmetry-breaking effects upon bipartite and multipartite entanglement in the XY model , 2007, 0709.1956.

[38]  Davide Rossini,et al.  Ground-state factorization and correlations with broken symmetry , 2010, 1012.4270.

[39]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[40]  M. S. Sarandy,et al.  Long-range quantum discord in critical spin systems , 2010, 1012.5926.

[41]  M. Lavagna Quantum Phase Transitions , 2001, cond-mat/0102119.

[42]  O. Syljuåsen Entanglement and spontaneous symmetry breaking in quantum spin models , 2003, quant-ph/0307087.