Analysis of Sparse Quasi-Newton Updates with Positive Definite Matrix Completion

Quasi-Newton methods are powerful techniques for solving unconstrained minimization problems. Variable metric methods, which include the BFGS and DFP methods, generate dense positive definite approximations and, therefore, are not applicable to large-scale problems. To overcome this difficulty, a sparse quasi-Newton update with positive definite matrix completion that exploits the sparsity pattern $$E :=\{(i, j)\;|\; (\nabla^2 f(x))_{ij} \neq 0\,{\rm for\,some}\, x \in R^n\}$$ of the Hessian is proposed. The proposed method first calculates a partial approximate Hessian $$H^{QN}_{ij}, (i, j) \in F$$ , where $$F \supseteq E$$ , using an existing quasi-Newton update formula such as the BFGS or DFP methods. Next, a full matrix Hk+1, which is a maximum-determinant positive definite matrix completion of $$H^{QN}_{ij}, (i, j) \in F$$ , is obtained. If the sparsity pattern E (or its extension F) has a property related to a chordal graph, then the matrix Hk+1 can be expressed as products of some sparse matrices. The time and space requirements of the proposed method are lower than those of the BFGS or the DFP methods. In particular, when the Hessian matrix is tridiagonal, the complexities become O(n). The proposed method is shown to have superlinear convergence under the usual assumptions.

[1]  Nicholas I. M. Gould,et al.  Lancelot: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A) , 1992 .

[2]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[3]  Andreas Griewank,et al.  Numerical experiments with partially separable optimization problems , 1984 .

[4]  Yu-Hong Dai,et al.  Convergence Properties of the BFGS Algoritm , 2002, SIAM J. Optim..

[5]  Thomas F. Coleman,et al.  Software for estimating sparse Hessian matrices , 1985, TOMS.

[6]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[7]  Roger Fletcher,et al.  An Optimal Positive Definite Update for Sparse Hessian Matrices , 1995, SIAM J. Optim..

[8]  I M GouldNicholas,et al.  CUTEr and SifDec , 2003 .

[9]  J. Nocedal,et al.  Global Convergence of a Class of Quasi-newton Methods on Convex Problems, Siam Some Global Convergence Properties of a Variable Metric Algorithm for Minimization without Exact Line Searches, Nonlinear Programming, Edited , 1996 .

[10]  P. Toint On sparse and symmetric matrix updating subject to a linear equation , 1977 .

[11]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[12]  M. J. D. Powell,et al.  How bad are the BFGS and DFP methods when the objective function is quadratic? , 1986, Math. Program..

[13]  M. Powell,et al.  The Shanno-Toint Procedure for Updating Sparse Symmetric Matrices , 1981 .

[14]  Andreas Griewank,et al.  On the unconstrained optimization of partially separable functions , 1982 .

[15]  J. Nocedal,et al.  A tool for the analysis of Quasi-Newton methods with application to unconstrained minimization , 1989 .

[16]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[17]  M. J. D. Powell,et al.  Nonlinear optimization, 1981 , 1982 .

[18]  Roger Fletcher,et al.  A New Variational Result for Quasi-Newton Formulae , 1991, SIAM J. Optim..

[19]  M. Powell,et al.  On the Estimation of Sparse Hessian Matrices , 1979 .

[20]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[21]  Andreas Griewank,et al.  On the existence of convex decompositions of partially separable functions , 1984, Math. Program..

[22]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[23]  J. J. Moré,et al.  Quasi-Newton Methods, Motivation and Theory , 1974 .

[24]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[25]  Nicholas I. M. Gould,et al.  CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.

[26]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[27]  A. George,et al.  Graph theory and sparse matrix computation , 1993 .

[28]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[29]  Philippe L. Toint,et al.  Forcing sparsity by projecting with respect to a non-diagonally weighted frobenius norm , 1983, Math. Program..

[30]  D. Sorensen Collinear scaling and sequential estimation in sparse optimization algorithms , 1982 .

[31]  P. Toint,et al.  Local convergence analysis for partitioned quasi-Newton updates , 1982 .

[32]  P. Toint,et al.  Partitioned variable metric updates for large structured optimization problems , 1982 .

[33]  R. Tewarson,et al.  Quasi-Newton Algorithms with Updates from the Preconvex Part of Broyden's Family , 1988 .

[34]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .