Perpendicular Nanomagnetic Logic: Digital Logic Circuits from Field-coupled Magnets

Perpendicular Nanomagnetic Logic (pNML) is a promising, emerging beyond-CMOS technology employing field-coupling of nonvolatile nanomagnets to perform logic operations. This work investigates digital logic circuits from field-coupled magnets at the nanoscale by experiment. Focus is put on the demonstration of the fundamental principles of pNML, their modeling and application in basic logic gates and circuits. Simulations show the performance of pNML in terms of scaling and material improvements and prove the high potential of complex pNML systems.

[1]  Michael T. Niemier,et al.  Design and comparison of NML systolic architectures , 2010, 2010 IEEE/ACM International Symposium on Nanoscale Architectures.

[2]  S. Parkin,et al.  Pt layer thickness dependence of magnetic properties in Co/Pt multilayers , 1991 .

[3]  Wolfgang Porod,et al.  Field-coupled computing in magnetic multilayers , 2008 .

[4]  D. O. Smith Development of a Vibrating-Coil Magnetometer , 1956 .

[5]  W. Kern The Evolution of Silicon Wafer Cleaning Technology , 1990 .

[6]  Jianping Wang,et al.  Spin transfer torque programming dipole coupled nanomagnet arrays , 2012 .

[7]  A. Panchula,et al.  Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers , 2004, Nature materials.

[8]  J. Fassbender,et al.  Magnetic patterning by means of ion irradiation and implantation , 2008 .

[9]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[10]  Sung-Min Ahn,et al.  Control of domain wall pinning in ferromagnetic nanowires by magnetic stray fields , 2011, Nanotechnology.

[11]  D. Schmitt-Landsiedel,et al.  Nanomagnetic Logic in Focused Ion Beam Engineered Co/Pt Multilayer Films , 2011 .

[12]  Wolfgang Porod,et al.  Behavior of Nanomagnet Logic in the presence of thermal noise , 2010, 2010 14th International Workshop on Computational Electronics.

[13]  Wolfgang Porod,et al.  Quantum-Dot Cellular Automata: Line and Majority Logic Gate , 1999 .

[14]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1991 .

[15]  L. Néel Anisotropie magnétique superficielle et surstructures d'orientation , 1954 .

[16]  S. Lee,et al.  Magnetic bubble logic , 1974 .

[17]  Dominique Mailly,et al.  Experimental evidence of the Neel-Brown model of magnetization reversal , 1997 .

[18]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[19]  S. Bandiera,et al.  Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection , 2011, Nature.

[20]  P. He,et al.  Magneto-optical Kerr effect and perpendicular magnetic anisotropy of evaporated and sputtered Co/Pt multilayer structures , 1991 .

[21]  C. Lent,et al.  Electronic quantum-dot cellular automata , 2008, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology.

[22]  Hiroshi Iwai Future of nano CMOS technology , 2014, 2014 IEEE International Conference on Electron Devices and Solid-State Circuits.

[23]  A. Drews,et al.  Controlled pinning and depinning of domain walls in nanowires with perpendicular magnetic anisotropy , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Kelin J. Kuhn CMOS scaling beyond 32nm: Challenges and opportunities , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[25]  Control of domain wall motion at vertically etched nanotrench in ferromagnetic nanowires , 2013, 1404.1138.

[26]  Gary H. Bernstein,et al.  Quantum-dot cellular automata by electric and magnetic field coupling , 2003, Proceedings of the IEEE 2003 Custom Integrated Circuits Conference, 2003..

[27]  Meyer,et al.  Magnetization reversal in ultrathin ferromagnetic films with perpendicular anistropy: Domain observations. , 1990, Physical review letters.

[28]  U. Gianola Possibilities of All-Magnetic Logic , 1961 .

[29]  W. Porod,et al.  Focused ion beam structured Co/Pt multilayers for field-coupled magnetic computing , 2007 .

[30]  A. Guimarães Principles of Nanomagnetism , 2010 .

[31]  Wolfgang Porod,et al.  Systolic Pattern Matching Hardware With Out-of-Plane Nanomagnet Logic Devices , 2013, IEEE Transactions on Nanotechnology.

[32]  J. Wood,et al.  Metal oxide semiconductor transistors in digital logic and storage , 1966 .

[33]  William Fuller Brown,et al.  Theory of the Approach to Magnetic Saturation , 1940 .

[34]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .

[35]  D. Schmitt-Landsiedel,et al.  Magnetic Ordering of Focused-Ion-Beam Structured Cobalt-Platinum Dots for Field-Coupled Computing , 2008, IEEE Transactions on Nanotechnology.

[36]  Magnetic domain walls: traps with potential. , 2013, Nature nanotechnology.

[37]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[38]  B. Diény,et al.  Magnetic logic using nanowires with perpendicular anisotropy , 2009, Nanotechnology.

[39]  D. Engelbart A new all-magnetic logic system using simple cores , 1959 .

[40]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[41]  M. Gajek,et al.  Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy , 2012 .

[42]  L. You,et al.  Spin Hall effect clocking of nanomagnetic logic without a magnetic field. , 2014, Nature nanotechnology.

[43]  K. Shin,et al.  Depinning Field at Notches of Ferromagnetic Nanowires With Perpendicular Magnetic Anisotropy , 2009, IEEE Transactions on Magnetics.

[44]  Sung-chul Shin,et al.  Magnetic field dependence of magnetization reversal behavior in Co/Pt multilayers , 2001 .

[45]  Young Keun Kim,et al.  Effects of notch shape on the magnetic domain wall motion in nanowires with in-plane or perpendicular magnetic anisotropy , 2012 .

[46]  W. Porod,et al.  Simulation of Power Gain and Dissipation in Field-Coupled Nanomagnets , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[47]  E. Martínez,et al.  The stochastic nature of the domain wall motion along high perpendicular anisotropy strips with surface roughness , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Simon Foner,et al.  Versatile and Sensitive Vibrating‐Sample Magnetometer , 1959 .

[49]  Martin M. Frank High-k / metal gate innovations enabling continued CMOS scaling , 2011 .

[50]  G. Beach,et al.  Time-resolved measurements of field-driven domain wall motion in a submicron strip with perpendicular magnetic anisotropy , 2012 .

[51]  P. Grünberg,et al.  Exchange anisotropy, interlayer exchange coupling and GMR in research and application , 2001 .

[52]  K Rupp,et al.  The Economic Limit to Moore's Law , 2011, IEEE Transactions on Semiconductor Manufacturing.

[53]  D. Litvinov,et al.  Microstructural origin of switching field distribution in patterned Co∕Pd multilayer nanodots , 2008 .

[54]  W. Brown Thermal Fluctuations of a Single‐Domain Particle , 1963 .

[55]  P. Carcia,et al.  Magnetic and structural properties of nanophase Pt/Co multilayers , 1996 .

[56]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[57]  T. Ono,et al.  Depinning fields of a magnetic domain wall from asymmetric notches , 2006 .

[58]  Hui Zhao,et al.  Probing dipole coupled nanomagnets using magnetoresistance read , 2011 .

[59]  L. Abelmann,et al.  Thermally induced switching field distribution of a single CoPt dot in a large array , 2010, Nanotechnology.

[60]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[61]  Mohmmad T. Alam,et al.  On-Chip Clocking for Nanomagnet Logic Devices , 2010, IEEE Transactions on Nanotechnology.

[62]  J. Ferré,et al.  Magnetization reversal in ultrathin ferromagnetic films with perpendicular anisotropy , 1997 .

[63]  Wolfgang Porod,et al.  Field-coupled nanomagnets for interconnect-free nonvolatile computing , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[64]  M. Sharrock,et al.  Kinetic effects in coercivity measurements , 1981 .

[65]  D. E. Nikonov,et al.  Uniform methodology for benchmarking beyond-CMOS logic devices , 2012, 2012 International Electron Devices Meeting.

[66]  H. T. Kung Why systolic architectures? , 1982, Computer.

[67]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[68]  W. B. Zeper,et al.  Perpendicular magnetic anisotropy and magneto-optical Kerr effect of vapor-deposited Co/Pt-layered structures , 1989 .

[69]  Wolfgang Porod,et al.  Investigation of shape-dependent switching of coupled nanomagnets , 2003 .

[70]  Robert Perricone,et al.  Design of 3D nanomagnetic logic circuits: A full-adder case study , 2014, 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[71]  M. Sharrock,et al.  Time dependence of switching fields in magnetic recording media (invited) , 1994 .

[72]  M. Forshaw,et al.  Physical constraints on magnetic quantum cellular automata , 2003 .

[73]  Rainer Waser,et al.  Nanoelectronics and Information Technology , 2012 .

[74]  A Imre,et al.  Majority Logic Gate for Magnetic Quantum-Dot Cellular Automata , 2006, Science.

[75]  W. B. Zeper,et al.  Sputtered Pt/Co multilayers for magneto-optical recording , 1990 .

[76]  S. Guterman,et al.  Logical and Control Functions Performed with Magnetic Cores , 1955, Proceedings of the IRE.

[77]  G H Bernstein,et al.  Nanomagnet logic: progress toward system-level integration , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[78]  Geoffrey S. D. Beach,et al.  Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires , 2005, Nature materials.

[79]  Mike Golio,et al.  Fifty Years of Moore's Law , 2015, Proc. IEEE.

[80]  C. D. Wright,et al.  Development of a scanning laser microscope for magneto-optic studies of thin magnetic films , 1991 .

[81]  P. Carcia Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin‐film layered structures , 1988 .

[82]  P. Gaunt Magnetic viscosity and thermal activation energy , 1986 .

[83]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[84]  Hewitt D. Crane,et al.  Digital Magnetic Logic , 1969 .

[85]  Leon Abelmann,et al.  Magnetic Force Microscopy , 2010 .

[86]  J. H. Franken,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[87]  J. H. Franken,et al.  Domain-wall pinning by local control of anisotropy in Pt/Co/Pt strips , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[88]  Michael T. Niemier,et al.  A Reconfigurable PLA Architecture for Nanomagnet Logic , 2012, JETC.

[89]  A. N. Bogdanov,et al.  Magnetic Domains. The Analysis of Magnetic Microstructures , 1999 .

[90]  O. Hellwig,et al.  Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films , 2007 .

[91]  R. Sandfort,et al.  Logic functions for magnetic bubble devices , 1971 .

[92]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[93]  T. Devolder,et al.  Experimental analysis of the fast magnetization dynamics in high perpendicular anisotropy Co/Pt nanostructures , 2006 .

[94]  W. Porod,et al.  Magnetic–Electrical Interface for Nanomagnet Logic , 2011, IEEE Transactions on Nanotechnology.

[95]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[96]  W. Porod,et al.  Domain-wall trapping and control on submicron magnetic wire by localized field , 2009, 2009 9th IEEE Conference on Nanotechnology (IEEE-NANO).

[97]  J. Katine,et al.  Device implications of spin-transfer torques , 2008 .

[98]  R. Spain,et al.  Magnetic film domain-wall motion devices , 1970 .

[99]  Hjm Henk Swagten,et al.  Controlled domain-wall injection in perpendicularly magnetized strips , 2010 .

[100]  J. Ferré,et al.  Model for domain wall pinning by randomly distributed nanosized defects in ultrathin magnetic films , 2009 .

[101]  C. Wright,et al.  Observations of magneto‐optic phase contrast using a scanning laser microscope , 1991 .

[103]  J. Tou Applied Automata Theory , 1969 .

[104]  W. Porod,et al.  Experimental demonstration of fanout for Nanomagnet Logic , 2010, 68th Device Research Conference.

[105]  U. Hartmann The point dipole approximation in magnetic force microscopy , 1989 .

[106]  O. Hellwig,et al.  Magnetization reversal of Co/Pt multilayers: Microscopic origin of high-field magnetic irreversibility - eScholarship , 2004 .

[107]  Uwe Bauer,et al.  Voltage-controlled domain wall traps in ferromagnetic nanowires. , 2013, Nature nanotechnology.

[108]  C. D. Wright,et al.  The physical principles of magneto-optical recording , 1996 .

[109]  Atsufumi Hirohata,et al.  Future perspectives for spintronic devices , 2014 .

[110]  B. Diény,et al.  Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. , 2007, Physical review letters.

[111]  Robert O. Winder,et al.  Threshold logic , 1971, IEEE Spectrum.

[112]  T. Devolder,et al.  Planar patterned magnetic media obtained by ion irradiation , 1998, Science.

[113]  Justin M. Shaw,et al.  Magnetic nanostructures for advanced technologies: fabrication, metrology and challenges , 2011 .

[114]  Yoshitaka Ochiai,et al.  Perpendicular magnetic anisotropy and magnetostriction of sputtered Co/Pd and Co/Pt multilayered films , 1989 .

[115]  J. Rajchman,et al.  A Survey of Magnetic and Other Solid-State Devices for the Manipulation of Information , 1957 .

[116]  T. Suzuki,et al.  Magnetization reversal and defects in Co/Pt multilayers , 1993 .

[117]  W. Porod,et al.  Implementation of a nanomagnetic full adder circuit , 2011, 2011 11th IEEE International Conference on Nanotechnology.

[118]  Lev Davidovich Landau,et al.  ON THE THEORY OF THE DISPERSION OF MAGNETIC PERMEABILITY IN FERROMAGNETIC BODIES , 1935 .

[119]  G. Hu,et al.  Intrinsic distribution of magnetic anisotropy in thin films probed by patterned nanostructures. , 2006, Physical review letters.

[120]  Louis Néel,et al.  Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh , 1950 .

[121]  J. Katine,et al.  Current-induced magnetization reversal in nanopillars with perpendicular anisotropy , 2006 .

[122]  T. Gilbert A phenomenological theory of damping in ferromagnetic materials , 2004, IEEE Transactions on Magnetics.

[123]  W. Porod,et al.  Exploring the Design of the Magnetic–Electrical Interface for Nanomagnet Logic , 2013, IEEE Transactions on Nanotechnology.

[124]  J. E. Brewer,et al.  Extending the road beyond CMOS , 2002 .

[125]  D. Schmitt-Landsiedel,et al.  Systolic architectures and applications for nanomagnet logic , 2012, 2012 IEEE Silicon Nanoelectronics Workshop (SNW).

[126]  Ghavam G. Shahidi Evolution of CMOS Technology at 32 nm and Beyond , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[127]  Kozo Kinoshita,et al.  On Magnetic Bubble Logic Circuits , 1976, IEEE Transactions on Computers.

[128]  Sung-chul Shin,et al.  Dependences of the activation volumes on Ar sputtering pressure in Co/Pt multilayers prepared by dc magnetron sputtering , 2002 .

[129]  D. Schmitt-Landsiedel,et al.  Boolean and non-boolean nearest neighbor architectures for out-of-plane nanomagnet logic , 2012, 2012 13th International Workshop on Cellular Nanoscale Networks and their Applications.

[130]  Y. Kawada,et al.  Co/Pt multilayers perpendicular magnetic recording media with thin Pt layers and high perpendicular anisotropy , 2002 .

[131]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[133]  J. H. Franken,et al.  Shift registers based on magnetic domain wall ratchets with perpendicularly anisotrpoy , 2012 .

[134]  B. Diény,et al.  The 2014 Magnetism Roadmap , 2014, 1410.6404.

[135]  A. Moser,et al.  Thermal effect limits in ultrahigh-density magnetic recording , 1999 .

[136]  O. Hellwig,et al.  Ultrafast magnetization dynamics in high perpendicular anisotropy †Co/Pt‡ n multilayers , 2007 .

[137]  P. Gaunt The frequency constant for thermal activitation of a ferromagnetic domain wall , 1977 .

[138]  J. E. Stern,et al.  Magnetic force microscopy: General principles and application to longitudinal recording media , 1990 .

[139]  S. Choe,et al.  Analytic theory of wall configuration and depinning mechanism in magnetic nanostructure with perpendicular magnetic anisotropy , 2009 .

[140]  G. Beach,et al.  Roles of the magnetic field and electric current in thermally activated domain wall motion in a submicrometer magnetic strip with perpendicular magnetic anisotropy , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[141]  K. J. Kuhn,et al.  Considerations for Ultimate CMOS Scaling , 2012, IEEE Transactions on Electron Devices.

[142]  F. Bloch,et al.  Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika , 1932 .

[143]  H. Fangohr,et al.  Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires , 2011, 1104.3010.

[144]  E. Clark A survey of solid-state logic circuitry , 1958 .

[145]  L. M. Terman MOSFET memory circuits , 1971 .

[146]  S. Hashimoto,et al.  Film thickness dependence of magneto‐optical and magnetic properties in Co/Pt and Co/Pd multilayers , 1990 .

[147]  D. Ravelosona,et al.  Tailoring magnetism by light-ion irradiation , 2004 .

[148]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[149]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[150]  T. Devolder Light ion irradiation of Co/Pt systems: Structural origin of the decrease in magnetic anisotropy , 2000 .