On a Generalization of Extended Resolution

Abstract Motivated by improved SAT algorithms ((O. Kullmann, DIMACS Series, vol. 35, Amer. Math. Soc., Providence, RI, 1997; O. Kullmann, Theoret. Comput. Sci. (1999); O. Kullmann, Inform. Comput., submitted); yielding new worst-case upper bounds) a natural parameterized generalization GER of Extended Resolution (ER) is introduced. ER can simulate polynomially GER, but GER allows special cases for which exponential lower bounds can be proven.

[1]  Paul W. Purdom,et al.  Solving Satisfiability with Less Searching , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Oliver Kullman Worst-case analysis, 3-SAT decision and lower bounds: Approaches for improved SAT algorithms , 1996, Satisfiability Problem: Theory and Applications.

[3]  Alasdair Urquhart,et al.  The Complexity of Propositional Proofs , 1995, Bulletin of Symbolic Logic.

[4]  Toniann Pitassi,et al.  A Feasibly Constructive Lower Bound for Resolution Proofs , 1990, Inf. Process. Lett..

[5]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[6]  Stephen Cook,et al.  Corrections for "On the lengths of proofs in the propositional calculus preliminary version" , 1974, SIGA.

[7]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[8]  Jan Krajícek,et al.  Propositional proof systems, the consistency of first order theories and the complexity of computations , 1989, Journal of Symbolic Logic.

[9]  Oliver Kullmann,et al.  Algorithms for SAT/TAUT decision based on various measures , 1998 .

[10]  I. Schiermeyer Pure Literal Look Ahead: An O(1,497^n) Satisfiability Algorithm (Extended Abstract) , 1996 .

[11]  G. S. Tseitin On the Complexity of Derivation in Propositional Calculus , 1983 .

[12]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[13]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[14]  Peter L. Hammer,et al.  Discrete Applied Mathematics , 1993 .

[15]  Oliver Kullmann,et al.  Deciding propositional tautologies: Algorithms and their complexity , 1997 .

[16]  Stephen A. Cook,et al.  A short proof of the pigeon hole principle using extended resolution , 1976, SIGA.

[17]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..