Constructive fractional-moment criteria for localization in random operators

We present a family of finite-volume criteria which cover the regime of exponential decay for the fractional moments of Green functions of operators with random potentials. Such decay is a technically convenient characterization of localization for it is known to imply spectral localization, absence of level repulsion, dynamical localization and a related condition which plays a significant role in the quantization of the Hall conductance in two-dimensional Fermi gases. The constructive criteria also preclude fast power-law decay of the Green functions at mobility edges.

[1]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[2]  G. Stolz,et al.  Localization for random perturbations of periodic Schrödinger operators , 1998 .

[3]  J. Combes,et al.  Localization Near Band Edges For Random Schr Odinger Operators , 1997 .

[4]  F. Klopp INTERNAL LIFSHITS TAILS FOR RANDOM PERTURBATIONS OF PERIODIC SCHRODINGER OPERATORS , 1999 .

[5]  Hervé Kunz,et al.  Sur le spectre des opérateurs aux différences finies aléatoires , 1980 .

[6]  E. Lieb A refinement of Simon's correlation inequality , 1980 .

[7]  Barry Simon,et al.  Correlation inequalities and the decay of correlations in ferromagnets , 1980 .

[8]  R. Holley,et al.  Rapid Convergence to Equilibrium of Stochastic Ising Models in the Dobrushin Shlosman Regime , 1987 .

[9]  B. Simon Lifschitz tails for the Anderson model , 1985 .

[10]  Senya Shlosman,et al.  Ergodicity of probabilistic cellular automata: A constructive criterion , 1991 .

[11]  A. Figotin,et al.  Localization of electromagnetic and acoustic waves in random media. Lattice models , 1994 .

[12]  R. Dobrushin,et al.  Completely analytical interactions: Constructive description , 1987 .

[13]  LIFSHITZ ASYMPTOTICS VIA LINEAR COUPLING OF DISORDER 281 For due to tunneling effects , φ might still live on parts of space where Vω , 1999 .

[14]  P. Stollmann,et al.  Multi-scale analysis implies strong dynamical localization , 1999, math-ph/9912002.

[15]  Y. Fyodorov,et al.  Localization transition in the Anderson model on the Bethe lattice: Spontaneous symmetry breaking and correlation functions , 1991 .

[16]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[17]  M. Aizenman,et al.  Finite-volume Criteria for Anderson Localization , 1999 .

[18]  J. Hammersley Percolation processes , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  B. Simon,et al.  Operators with singular continuous spectrum, IV. Hausdorff dimensions, rank one perturbations, and localization , 1996 .

[20]  Localization bounds for an electron gas , 1996, cond-mat/9603116.

[21]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[22]  B. Simon,et al.  Singular continuous spectrum under rank one perturbations and localization for random hamiltonians , 1986 .

[23]  M. Aizenman LOCALIZATION AT WEAK DISORDER: SOME ELEMENTARY BOUNDS , 1994 .

[24]  Charge deficiency, charge transport and comparison of dimensions , 1998, physics/9803014.

[25]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[26]  C. A. Murray,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[27]  B. Simon,et al.  Local Ward identities and the decay of correlations in ferromagnets , 1980 .

[28]  A. Klein Absolutely Continuous Spectrum in the Anderson Model on the Bethe Lattice , 1994 .