A characterization of pseudoinvexity for the efficiency in non-differentiable multiobjective problems. Duality

Abstract We prove that in order for the Kuhn–Tucker or Fritz John points to be efficient solutions, it is necessary and sufficient that the non-differentiable multiobjective problem functions belong to new classes of functions that we introduce here: KT-pseudoinvex-II or FJ-pseudoinvex-II, respectively. We illustrate it by examples. These characterizations generalize recent results given for the differentiable case. We study the dual problem and establish weak, strong and converse duality results.

[1]  G. Giorgi,et al.  Nonsmooth vector-valued invex functions and applications , 2000 .

[2]  Do Sang Kim,et al.  Generalized Convexity and Nonsmooth Problems of Vector Optimization , 2005, J. Glob. Optim..

[3]  Do Sang Kim,et al.  Optimality and Duality for Invex Nonsmooth Multiobjective programming problems , 2004 .

[4]  C. S. Lalitha,et al.  Generalized Nonsmooth Invexity , 1994 .

[5]  W. Ziemba,et al.  Generalized concavity in optimization and economics , 1981 .

[6]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[7]  M. A. Hanson,et al.  Multiobjective duality with invexity , 1987 .

[8]  Kin Keung Lai,et al.  Optimality and Duality in Nondifferentiable and Multiobjective Programming under Generalized d-Invexity , 2004, J. Glob. Optim..

[9]  P. Kanniappan,et al.  Necessary conditions for optimality of nondifferentiable convex multiobjective programming , 1983 .

[10]  S. Nobakhtian Infine functions and nonsmooth multiobjective optimization problems , 2006, Comput. Math. Appl..

[11]  Adi Ben-Israel,et al.  What is invexity? , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[12]  Manuel Arana-Jiménez,et al.  Pseudoinvexity, optimality conditions and efficiency in multiobjective problems; duality , 2008 .

[13]  R. Osuna-Gómez,et al.  Invex Functions and Generalized Convexity in Multiobjective Programming , 1998 .

[14]  A. Rufián-Lizana,et al.  Generalized Convexity in Multiobjective Programming , 1999 .

[15]  B. M. Glover,et al.  Invex functions and duality , 1985, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[16]  D. H. Martin The essence of invexity , 1985 .

[17]  B. Craven Invex functions and constrained local minima , 1981, Bulletin of the Australian Mathematical Society.

[18]  Surjeet Kaur Suneja,et al.  Generalized nonsmooth invexity over cones in vector optimization , 2008, Eur. J. Oper. Res..

[19]  S. Nobakhtian Optimality Criteria and Duality in Multiobjective Programming Involving Nonsmooth Invex Functions , 2006, J. Glob. Optim..

[20]  M. A. Hanson On sufficiency of the Kuhn-Tucker conditions , 1981 .

[21]  Antonio Rufián-Lizana,et al.  A characterization of pseudoinvexity in multiobjective programming , 2008, Math. Comput. Model..

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .