An In-Depth View of the Microscopic Dynamics of Ising Spin Glasses at Fixed Temperature

Using the special-purpose computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.

[1]  Victor Martin-Mayor,et al.  Field Theory, the Renormalization Group and Critical Phenomena , 1984 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  A P Young,et al.  Nature of the spin glass state. , 2000, Physical review letters.

[4]  Mean Field Dynamical Exponents in Finite-Dimensional Ising Spin Glass , 1997, cond-mat/9702030.

[5]  P. Contucci,et al.  Overlap equivalence in the Edwards-Anderson model. , 2005, Physical review letters.

[6]  UNIVERSAL FINITE-SIZE SCALING FUNCTIONS IN THE 3D ISING SPIN GLASS , 1999, cond-mat/9904246.

[7]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[8]  G. Parisi,et al.  Nonequilibrium spin-glass dynamics from picoseconds to a tenth of a second. , 2008, Physical review letters.

[9]  Fisher,et al.  Nonequilibrium dynamics of spin glasses. , 1988, Physical review. B, Condensed matter.

[10]  Frauke Liers,et al.  Low-energy excitations in spin glasses from exact ground states , 2003 .

[11]  Giorgio Parisi,et al.  Ultrametricity in the Edwards-Anderson model. , 2007, Physical review letters.

[12]  Universality in the off-equilibrium critical dynamics of the three-dimensional diluted Ising model. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  V. Martin-Mayor,et al.  Ageing in spin-glasses in three, four and infinite dimensions , 2003 .

[14]  H. Rieger Nonequilibrium dynamics and aging in the three-dimensional Ising spin-glass model , 1993, cond-mat/9303048.

[15]  Ogielski,et al.  Dynamics of three-dimensional Ising spin glasses in thermal equilibrium. , 1985, Physical review. B, Condensed matter.

[16]  Off equilibrium dynamics and aging in unfrustrated systems , 1994, cond-mat/9406053.

[17]  A. Bray,et al.  Scaling theory of the ordered phase of spin glasses , 1987 .

[18]  G. G. Wood,et al.  EXTRACTION OF THE SPIN GLASS CORRELATION LENGTH , 1999 .

[19]  G. Parisi,et al.  Off-equilibrium dynamics at very low temperatures in three-dimensional spin glasses , 1999, cond-mat/9910232.

[20]  Denis Navarro,et al.  Ianus: an adaptive FPGA computer , 2006, Computing in Science & Engineering.

[21]  Critical properties of the antiferromagnetic RP 2 model in three dimensions , 1996, hep-lat/9605037.

[22]  Lundgren,et al.  Static scaling in a short-range Ising spin glass. , 1991, Physical review. B, Condensed matter.

[23]  Jean-Philippe Bouchaud,et al.  Slow dynamics and aging in spin glasses , 1996, cond-mat/9607224.

[24]  Study of the phase transition in the 3D Ising spin glass from out-of-equilibrium numerical simulations , 2006, cond-mat/0603266.

[25]  Denis Navarro,et al.  Simulating spin systems on IANUS, an FPGA-based computer , 2007, Comput. Phys. Commun..

[26]  V. Martin-Mayor,et al.  New universality class in three dimensions?: the antiferromagnetic RP2 model , 1995, hep-lat/9511003.

[27]  Single spin and chiral glass transition in vector spin glasses in three dimensions. , 2003, Physical review letters.

[28]  Growing dynamical length, scaling, and heterogeneities in the 3D Edwards–Anderson model , 2007, cond-mat/0701116.

[29]  Parisi,et al.  Numerical evidence for spontaneously broken replica symmetry in 3D spin glasses. , 1996, Physical review letters.

[30]  J. Mydosh Spin glasses : an experimental introduction , 1993 .

[31]  Andrea Pelissetto,et al.  Critical behavior of three-dimensional Ising spin glass models , 2008, 0809.3329.

[32]  Dynamical scaling in Ising and vector spin glasses , 2005, cond-mat/0504082.

[33]  I. Kondor,et al.  Beyond the Sherrington-Kirkpatrick Model , 1997, cond-mat/9705215.

[34]  Aging, rejuvenation, and memory effects in Ising and Heisenberg spin glasses , 2001, cond-mat/0104399.

[35]  Ieee Xplore Computing in science & engineering , 1999 .

[36]  P. Svedlindh,et al.  Anomalous time dependence of the susceptibility in a Cu(Mn) spin glass , 1983 .

[37]  Victor Martin-Mayor,et al.  Rejuvenation and memory in model spin glasses in three and four dimensions , 2005 .

[38]  J. Bouchaud,et al.  Aging, rejuvenation and memory phenomena in spin glasses , 2004, cond-mat/0406721.

[39]  V Martin-Mayor,et al.  Spin-glass transition of the three-dimensional Heisenberg spin glass. , 2006, Physical review letters.

[40]  Spatially heterogeneous ages in glassy systems , 2002, cond-mat/0211558.

[41]  Ferreira,et al.  Extrapolating Monte Carlo simulations to infinite volume: Finite-size scaling at xi /L >> 1. , 1995, Physical review letters.

[42]  C. L. Ullod,et al.  SUE: A special purpose computer for spin glass models , 2001 .

[43]  W. L. Mcmillan Scaling theory of Ising spin glasses , 1984 .

[44]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[45]  L. Cugliandolo,et al.  Scaling and super-universality in the coarsening dynamics of the 3D random field Ising model , 2008, 0803.0664.

[46]  Separation of time and length scales in spin glasses: Temperature as a microscope , 2001, cond-mat/0106539.

[47]  A. Young,et al.  Spin glasses and random fields , 1997 .

[48]  J. Bouchaud,et al.  Geometrical aspects of aging and rejuvenation in the ising spin glass: A numerical study , 2002, cond-mat/0202069.

[49]  Spin-Glass Stochastic Stability: a Rigorous Proof , 2004, math-ph/0408002.

[50]  I. Morgenstern,et al.  Heidelberg Colloquium on Glassy Dynamics , 1987 .

[51]  Off-equilibrium dynamics in finite-dimensional spin-glass models. , 1995, Physical review. B, Condensed matter.

[52]  C. L. Ullod,et al.  Critical behavior of the three-dimensional Ising spin glass , 2000 .

[53]  Denis Navarro,et al.  Janus: An FPGA-Based System for High-Performance Scientific Computing , 2007, Computing in Science & Engineering.

[54]  M. Mézard,et al.  The Response of Glassy Systems to Random Perturbations: A Bridge Between Equilibrium and Off-Equilibrium , 1999, cond-mat/9903370.

[55]  G. Schehr,et al.  Nonequilibrium dynamics below the super-roughening transition , 2004, cond-mat/0410545.

[56]  L. Berthier,et al.  Direct Experimental Evidence of a Growing Length Scale Accompanying the Glass Transition , 2005, Science.

[57]  R. Orbach,et al.  Full aging in spin glasses. , 2002, Physical review letters.

[58]  Fred Cooper,et al.  Solving φ1,24 field theory with Monte Carlo , 1982 .

[59]  J. Bouchaud,et al.  Spin anisotropy and slow dynamics in spin glasses. , 2004, Physical review letters.

[60]  Chen,et al.  Time decay of the saturated remanent magnetization in a metallic spin glass. , 1987, Physical review. B, Condensed matter.

[61]  G. Parisi,et al.  Interfaces and louver critical dimension in a spin glass model , 1994, cond-mat/9405007.

[62]  Effects of a bulk perturbation on the ground state of 3D Ising spin glasses. , 2000, Physical review letters.

[63]  P. Contucci,et al.  The Ghirlanda-Guerra Identities , 2005, math-ph/0505055.

[64]  Claudio Chamon,et al.  Heterogeneous aging in spin glasses. , 2002, Physical review letters.

[65]  Numerical simulations of the dynamical behavior of the SK model , 1997, cond-mat/9708025.

[66]  Measuring Equilibrium Properties in Aging Systems , 1998, cond-mat/9803108.

[67]  Giorgio Parisi,et al.  On the origin of ultrametricity , 2000 .

[68]  Fisher,et al.  Ordered phase of short-range Ising spin-glasses. , 1986, Physical review letters.

[69]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[70]  G. Parisi,et al.  Replica Symmetry Breaking in Short-Range Spin Glasses: Theoretical Foundations and Numerical Evidences , 1999, cond-mat/9906076.

[71]  Minko Balkanski,et al.  Communications in Physics , 1986 .

[72]  Fisher,et al.  Equilibrium behavior of the spin-glass ordered phase. , 1988, Physical review. B, Condensed matter.

[73]  Memory and Chaos Effects in Spin Glasses , 1998, cond-mat/9806134.

[74]  F Krzakala,et al.  Spin and link overlaps in three-dimensional spin glasses. , 2000, Physical review letters.

[75]  M. Hasenbusch,et al.  The critical behavior of 3D Ising spin glass models: universality and scaling corrections , 2007, 0710.1980.