Circular law for random matrices with exchangeable entries

An exchangeable random matrix is a random matrix with distribution invariant under any permutation of the entries. For such random matrices, we show, as the dimension tends to infinity, that the empirical spectral distribution tends to the uniform law on the unit disc. This is an instance of the universality phenomenon known as the circular law, for a model of random matrices with dependent entries, rows, and columns. It is also a non-Hermitian counterpart of a result of Chatterjee on the semi-circular law for random Hermitian matrices with exchangeable entries. The proof relies in particular on a reduction to a simpler model given by a random shuffle of a rigid deterministic matrix, on Hermitization, and also on combinatorial concentration of measure and combinatorial Central Limit Theorem. A crucial step is a polynomial bound on the smallest singular value of exchangeable random matrices, which may be of independent interest.

[1]  Martin Raič,et al.  Normal Approximation by Stein ’ s Method , 2003 .

[2]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[3]  J. Ginibre Statistical Ensembles of Complex, Quaternion, and Real Matrices , 1965 .

[4]  M. Talagrand Concentration of measure and isoperimetric inequalities in product spaces , 1994, math/9406212.

[5]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[6]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[7]  Djalil CHAFAÏ,et al.  Circular law for non-central random matrices , 2007 .

[8]  Philip Matchett Wood Universality and the circular law for sparse random matrices. , 2010, 1010.1726.

[9]  S. Chatterjee A generalization of the Lindeberg principle , 2005, math/0508519.

[10]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[11]  R. Adamczak SOME REMARKS ON THE DOZIER–SILVERSTEIN THEOREM FOR RANDOM MATRICES WITH DEPENDENT ENTRIES , 2013 .

[12]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[13]  H. Nguyen,et al.  On the concentration of random multilinear forms and the universality of random block matrices , 2013, 1309.4815.

[14]  C. Bordenave,et al.  The circular law , 2012 .

[15]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[16]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[17]  Terence Tao,et al.  The condition number of a randomly perturbed matrix , 2007, STOC '07.

[18]  M. Ledoux The concentration of measure phenomenon , 2001 .

[19]  H. Nguyen Random doubly stochastic matrices: The circular law , 2012, 1205.0843.

[20]  C. Bordenave,et al.  Around the circular law , 2011, 1109.3343.

[21]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[22]  Djalil CHAFAÏ,et al.  Circular Law for Noncentral Random Matrices , 2007, 0709.0036.

[23]  C. Bordenave,et al.  Spectrum of Markov Generators on Sparse Random Graphs , 2012, 1202.0644.

[24]  Van Vu,et al.  Circular law for random discrete matrices of given row sum , 2012, 1203.5941.

[25]  R. Adamczak On the Marchenko-Pastur and Circular Laws for some Classes of Random Matrices with Dependent Entries , 2011 .

[26]  Tiefeng Jiang,et al.  Circular law and arc law for truncation of random unitary matrix , 2012 .

[27]  C. Bordenave,et al.  Spectrum of Non-Hermitian Heavy Tailed Random Matrices , 2010, 1006.1713.

[28]  M. Talagrand A new look at independence , 1996 .

[29]  Djalil CHAFAÏ,et al.  Circular law for random matrices with unconditional log-concave distribution , 2013, 1303.5838.

[30]  Madan Lal Mehta,et al.  Random Matrices and the Statistical Theory of Energy Levels , 2014 .

[31]  Tiefeng Jiang,et al.  Approximation of Haar distributed matrices and limiting distributions of eigenvalues of Jacobi ensembles , 2009 .