Local scales and multiscale image decompositions

Abstract This paper is devoted to the study of local scales (oscillations) in images and use the knowledge of local scales for image decompositions. Denote by K t ( x ) = ( e − 2 π t | ξ | 2 ) ∨ ( x ) , t > 0 , the Gaussian (heat) kernel. Motivated from the Triebel–Lizorkin function space F ˙ p , ∞ α , we define a local scale of f at x to be t ( x ) ⩾ 0 such that | S f ( x , t ) | = | t 1 − α / 2 ∂ K t ∂ t ∗ f ( x ) | is a local maximum with respect to t for some α 2 . For each x , we obtain a set of scales that f exhibits at x . The choice of α and a local smoothing method of local scales via the nontangential control will be discussed. We then extend the work in [J.B. Garnett, T.M. Le, Y. Meyer, L.A. Vese, Image decomposition using bounded variation and homogeneous Besov spaces, Appl. Comput. Harmon. Anal. 23 (2007) 25–56] to decompose f into u + v , with u being piecewise-smooth and v being texture, via the minimization problem inf u ∈ BV { K ( u ) = | u | BV + λ ‖ K t ¯ ( ⋅ ) ∗ ( f − u ) ( ⋅ ) ‖ L 1 } , where t ¯ ( x ) is some appropriate choice of a local scale to be captured at x in the oscillatory part v .

[1]  David Mumford,et al.  Statistics of natural images and models , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[2]  D. Mumford,et al.  Stochastic models for generic images , 2001 .

[3]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[4]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[5]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[6]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[7]  Satoshi Kawata,et al.  a-Si Gate Driver designs for low power AMLCD operation , 2007 .

[8]  Luminita A. Vese,et al.  Image Decomposition Using Total Variation and div(BMO) , 2005, Multiscale Model. Simul..

[9]  H. Triebel Characterizations of Besov-Hardy-Sobolev spaces via harmonic functions, temperatures, and related means , 1982 .

[10]  G. Aubert,et al.  Modeling Very Oscillating Signals. Application to Image Processing , 2005 .

[11]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[12]  Y. Meyer,et al.  Image decompositions using bounded variation and generalized homogeneous Besov spaces , 2007 .

[13]  Stefano Alliney,et al.  A property of the minimum vectors of a regularizing functional defined by means of the absolute norm , 1997, IEEE Trans. Signal Process..

[14]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[15]  L. Lieu,et al.  Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces , 2008 .

[16]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[17]  R. Strichartz Traces of BMO-Sobolev spaces , 1981 .

[18]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[19]  Y. Meyer,et al.  Variational methods in image processing , 2004 .

[20]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[21]  J. Garnett,et al.  Bounded Analytic Functions , 2006 .

[22]  F. Malgouyres,et al.  Mathematical analysis of a model which combines total variation and wavelet for image restoration 1 , 2002 .

[23]  L. Ambrosio,et al.  New Functionals in Calculus of Variations , 1989 .

[24]  Jean-Michel Morel,et al.  A variational method in image segmentation: Existence and approximation results , 1992 .

[25]  F. John,et al.  On functions of bounded mean oscillation , 1961 .

[26]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[27]  Herbert Koch,et al.  Well-posedness for the Navier–Stokes Equations , 2001 .

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[30]  H. Triebel Theory of Function Spaces III , 2008 .