Discovering Selective Diguanylate Cyclase Inhibitors: From PleD to Discrimination of the Active Site of Cyclic-di-GMP Phosphodiesterases.

[1]  S. Suh,et al.  Structural Basis of the Heterodimer Formation between Cell Shape-Determining Proteins Csd1 and Csd2 from Helicobacter pylori , 2016, PloS one.

[2]  J. Berthelsen,et al.  The anti-cancerous drug doxorubicin decreases the c-di-GMP content in Pseudomonas aeruginosa but promotes biofilm formation. , 2016, Microbiology.

[3]  Tilman Schirmer C-di-GMP Synthesis: Structural Aspects of Evolution, Catalysis and Regulation. , 2016, Journal of molecular biology.

[4]  Jie Zhou,et al.  Cyclic dinucleotide (c-di-GMP, c-di-AMP, and cGAMP) signalings have come of age to be inhibited by small molecules. , 2016, Chemical communications.

[5]  W. Yue,et al.  Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain , 2016, Scientific Reports.

[6]  F. Cutruzzolà,et al.  Novel genetic tools to tackle c‐di‐GMP‐dependent signalling in Pseudomonas aeruginosa , 2016, Journal of applied microbiology.

[7]  I. Schlichting,et al.  Structural analysis of an oxygen-regulated diguanylate cyclase. , 2015, Acta crystallographica. Section D, Biological crystallography.

[8]  A. Paiardini,et al.  Synthesis of Triazole-Linked Analogues of c-di-GMP and Their Interactions with Diguanylate Cyclase. , 2015, Journal of medicinal chemistry.

[9]  A. Paiardini,et al.  In Silico Discovery and In Vitro Validation of Catechol-Containing Sulfonohydrazide Compounds as Potent Inhibitors of the Diguanylate Cyclase PleD , 2015, Journal of bacteriology.

[10]  Guido Capitani,et al.  Functional roles of the hexamer organization of plant glutamate decarboxylase. , 2015, Biochimica et biophysica acta.

[11]  Fei Liu,et al.  A label-free and self-assembled electrochemical biosensor for highly sensitive detection of cyclic diguanylate monophosphate (c-di-GMP) based on RNA riboswitch. , 2015, Analytica chimica acta.

[12]  A. Herr,et al.  A minimalist biosensor: Quantitation of cyclic di-GMP using the conformational change of a riboswitch aptamer , 2015, RNA biology.

[13]  K. Swaminathan,et al.  Structure of a Diguanylate Cyclase from Thermotoga maritima: Insights into Activation, Feedback Inhibition and Thermostability , 2014, PloS one.

[14]  Ori J. Lieberman,et al.  High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. , 2014, ACS chemical biology.

[15]  N. Pattabiraman,et al.  Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development , 2014, Biofouling.

[16]  A. Paiardini,et al.  Investigating the Allosteric Regulation of YfiN from Pseudomonas aeruginosa: Clues from the Structure of the Catalytic Domain , 2013, PloS one.

[17]  Vincent T. Lee,et al.  Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2'-F-c-di-GMP. , 2013, Bioorganic & medicinal chemistry.

[18]  F. Sica,et al.  Probing the activity of diguanylate cyclases and c-di-GMP phosphodiesterases in real-time by CD spectroscopy , 2013, Nucleic acids research.

[19]  Joshua R. Smith,et al.  Identification of Small Molecules That Antagonize Diguanylate Cyclase Enzymes To Inhibit Biofilm Formation , 2012, Antimicrobial Agents and Chemotherapy.

[20]  G. Schneider,et al.  Structural Insights into the Regulatory Mechanism of the Response Regulator RocR from Pseudomonas aeruginosa in Cyclic Di-GMP Signaling , 2012, Journal of bacteriology.

[21]  Jie Zhou,et al.  Conservative change to the phosphate moiety of cyclic diguanylic monophosphate remarkably affects its polymorphism and ability to bind DGC, PDE, and PilZ proteins. , 2011, Journal of the American Chemical Society.

[22]  A. Ram,et al.  Applied Genetics and Molecular Biotechnology , 2022 .

[23]  H. Sondermann,et al.  Determinants for the activation and autoinhibition of the diguanylate cyclase response regulator WspR. , 2009, Journal of molecular biology.

[24]  Garrett M Morris,et al.  Using AutoDock for Ligand‐Receptor Docking , 2008, Current protocols in bioinformatics.

[25]  Zhao-Xun Liang,et al.  Catalytic Mechanism of Cyclic Di-GMP-Specific Phosphodiesterase: a Study of the EAL Domain-Containing RocR from Pseudomonas aeruginosa , 2008, Journal of bacteriology.

[26]  H. Sondermann,et al.  Phosphorylation-Independent Regulation of the Diguanylate Cyclase WspR , 2008, PLoS biology.

[27]  U. Jenal,et al.  Structure of BeF3- -modified response regulator PleD: implications for diguanylate cyclase activation, catalysis, and feedback inhibition. , 2007, Structure.

[28]  René Thomsen,et al.  MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.

[29]  B. Giese,et al.  Structural basis of activity and allosteric control of diguanylate cyclase. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  B. Giese,et al.  Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. , 2004, Genes & development.

[31]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[32]  N. Raffaelli,et al.  Monitoring of diguanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors , 2009, Applied Microbiology and Biotechnology.

[33]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..