In general, approximating classes of functions defined over high-dimensional input spaces by linear combinations of a fixed set of basis functions or “features” is known to be hard. Typically, the worstcase error of the best basis set decays only as fast as Θ (n−1/d, where n is the number of basis functions and d is the input dimension. However, there are many examples of high-dimensional pattern recognition problems (such as face recognition) where linear combinations of small sets of features do solve the problem well. Hence these function classes do not suffer from the “curse of dimensionality” associated with more general classes. It is natural then, to look for characterizations of highdimensional function classes that nevertheless are approximated well by linear combinations of small sets of features. In this paper we give a general result relating the error of approximation of a function class to the covering number of its “convex core”. For one-hidden-layer neural networks, covering numbers of the class of functions computed by a single hidden node upper bound the covering numbers of the convex core. Hence, using standard results we obtain upper bounds on the approximation rate of neural network classes.
[1]
A. Kolmogoroff,et al.
Uber Die Beste Annaherung Von Funktionen Einer Gegebenen Funktionenklasse
,
1936
.
[2]
A. Kolmogorov,et al.
Entropy and "-capacity of sets in func-tional spaces
,
1961
.
[3]
A. Pinkus.
n-Widths in Approximation Theory
,
1985
.
[4]
Sebastian Thrun,et al.
Learning One More Thing
,
1994,
IJCAI.
[5]
David Haussler,et al.
Sphere Packing Numbers for Subsets of the Boolean n-Cube with Bounded Vapnik-Chervonenkis Dimension
,
1995,
J. Comb. Theory, Ser. A.
[6]
Jonathan Baxter,et al.
Learning internal representations
,
1995,
COLT '95.
[7]
Jon A. Wellner,et al.
Weak Convergence and Empirical Processes: With Applications to Statistics
,
1996
.
[8]
G. Lorentz,et al.
Constructive approximation : advanced problems
,
1996
.
[9]
S. Edelman,et al.
Learning Low Dimensional Representations of Visual Objects With Extensive Use of Prior Knowledge
,
1997
.