CONJUGATE POINTS AND SHOCKS IN NONLINEAR OPTIMAL CONTROL

In this paper the authors use the method of characteristics to extend the Jacobi conjugate points theory to the Bolza problem arising in nonlinear optimal control. This yields necessary and sufficient optimality conditions for weak and strong local minima stated in terms of the existence of a solution to a corresponding matrix Riccati differential equation. The same approach allows to investigate as well smoothness of the value function.

[1]  M. Hestenes Calculus of variations and optimal control theory , 1966 .

[2]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[3]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[4]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[5]  C. Dafermos Generalized Characteristics and the Structure of Solutions of Hyperbolic Conservation Laws , 1976 .

[6]  David Q. Mayne,et al.  Sufficient conditions for a control to be a strong minimum , 1977 .

[7]  W. Reid,et al.  Riccati Differential Equations , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Vladimir Tikhomirov,et al.  Theorie der Extremalaufgaben , 1979 .

[9]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[10]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[11]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[12]  V. Barbu,et al.  Hamilton-Jacobi equations and synthesis of nonlinear control processes in Hilbert spaces , 1983 .

[13]  Vera Zeidan,et al.  Sufficient conditions for the generalized problem of Bolza , 1983 .

[14]  Extended Jacobi Sufficiency Criterion for Optimal Control , 1984 .

[15]  Vera Zeidan First and second order sufficient conditions for optimal control and the calculus of variations , 1984 .

[16]  Vera Zeidan A modified Hamilton-Jacobi approach in the generalized problem of Bolza , 1984 .

[17]  H. Frankowska Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation , 1987 .

[18]  A. Bensoussan Perturbation Methods in Optimal Control , 1988 .

[19]  Vera Zeidan,et al.  Necessary conditions for optimal control problems: conjugate points , 1988 .

[20]  D. Orrell,et al.  Another Jacobi sufficiency criterion for optimal control with smooth constraints , 1988 .

[21]  Vera Zeidan,et al.  The conjugate point condition for smooth control sets , 1988 .

[22]  V. Zeidan Sufficiency conditions with minimal regularity assumptions , 1989 .

[23]  V. Zeidan,et al.  Coupled points in the calculus of variations and applications to periodic problems , 1989 .

[24]  Halina Frankowska,et al.  Contingent cones to reachable sets of control systems , 1989 .

[25]  E. Barron,et al.  Semicontinuous Viscosity Solutions For Hamilton–Jacobi Equations With Convex Hamiltonians , 1990 .

[26]  Some characterizations of optimal trajectories in control theory , 1990, 29th IEEE Conference on Decision and Control.

[27]  H. Frankowska,et al.  Lower semicontinuous solutions to Hamilton-Jacobi-Bellman equations , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[28]  Vera Zeidan,et al.  Coupled points in optimal control theory , 1991 .

[29]  H. Frankowska,et al.  Unicité des solutions optimales et absence de chocs pour les équations d'Hamilton-Jacobi-Bellman et de Riccati , 1992 .

[30]  H. Frankowska,et al.  Optimality and Characteristics of Hamilton-Jacobi-Bellman Equations , 1992 .

[31]  H. Frankowska Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations , 1993 .

[32]  Caractéristiques de l'équation d'Hamilton-Jacobi et conditions d'optimalité en contrôle optimal non linéaire , 1994 .

[33]  A. A. Mili︠u︡tin,et al.  Calculus of variations and optimal control , 1998 .