TSK fuzzy systems types II and III stability analysis: continuous case

We propose a new approach for the stability analysis of continuous Sugeno Types II and III dynamic fuzzy systems. We introduce the concept of fuzzy positive definite and fuzzy negative definite systems and use them in arguments similar to those of traditional Lyapunov stability theory to derive new conditions for stability and asymptotic stability for continuous Type II/III dynamic fuzzy systems. To demonstrate the new approach, we apply it to numerical examples.

[1]  Ji-Chang Lo,et al.  Stability issues on Takagi-Sugeno fuzzy model-parametric approach , 1999, IEEE Trans. Fuzzy Syst..

[2]  Petr Husek,et al.  Comments on computing extreme values in "Stability issues on Takagi-Sugeno fuzzy model-parametric approach" [and reply] , 2001, IEEE Trans. Fuzzy Syst..

[3]  Petr Hu Comments on Computing Extreme Values in "Stability Issues on Takagi-Sugeno Fuzzy Model—Parametric Approach" , 2001 .

[4]  Tor Arne Johansen,et al.  Comment on "Stability issues on Takagi-Sugeno fuzzy model-parametric approach" [and reply] , 2000, IEEE Trans. Fuzzy Syst..

[5]  Christopher J. Harris,et al.  Piecewise Lyapunov stability conditions of fuzzy systems , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[6]  S. Żak Systems and control , 2002 .

[7]  M. S. Fadali,et al.  Fuzzy Lyapunov stability analysis of discrete type II TSK systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[8]  Karl-Erik Årzén,et al.  Piecewise quadratic stability of fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[9]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[10]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  M.S. Fadali,et al.  Generalized fuzzy Lyapunov stability analysis of discrete type II/III TSK systems , 2004, Proceedings of the 2004 American Control Conference.

[12]  Joongseon Joh,et al.  On the stability issues of linear Takagi-Sugeno fuzzy models , 1998, IEEE Trans. Fuzzy Syst..

[13]  Mandayam A. L. Thathachar,et al.  On the stability of fuzzy systems , 1997, IEEE Trans. Fuzzy Syst..

[14]  Chin-Tzong Pang,et al.  On the asymptotic stability of free fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[15]  Li-Xin Wang,et al.  A Course In Fuzzy Systems and Control , 1996 .

[16]  Michio Sugeno,et al.  On stability of fuzzy systems expressed by fuzzy rules with singleton consequents , 1999, IEEE Trans. Fuzzy Syst..

[17]  Bart Kosko,et al.  Global stability of generalized additive fuzzy systems , 1998, IEEE Trans. Syst. Man Cybern. Part C.