Sacrificial layer process with laser-driven release for batch assembly operations

A dry sacrificial layer process is presented in which microstructures fabricated on UV-transparent substrates are released by excimer laser ablation of a polymer sacrificial material using laser light incident from the reverse side of the substrate. We investigate the application of this technique to the batch assembly of hybrid microelectromechanical systems (MEMS) built from parts fabricated on different substrates. Preliminary measurements of initial velocity are presented for nickel test structures released from polyimide sacrificial layers using a KrF excimer laser. At fluences in the range 50-250 mJ/cm/sup 2/ (i.e., close to the ablation threshold), structures with heights of 100 /spl mu/m are shown to exhibit initial velocities in the range 15 ms/sup -1/, allowing controlled transfer of parts between substrates. Application of the new assembly method to a MEMS device is demonstrated by assembling arrays of electrostatic wobble motors from component parts fabricated on separate substrates by UV-LIGA processing.

[1]  A. Holmes,et al.  Low cost LIGA processes , 1997 .

[2]  Tadatomo Suga,et al.  Microassembly System for Integration of MEMS Using the Surface Activated Bonding Method , 1997 .

[3]  B. Löchel,et al.  Optical DUV-lithography for high microstructures , 1996 .

[4]  A. S. Holmes,et al.  The formation of moulds for 3D microstructures using excimer laser ablation , 1996 .

[5]  Andrew S. Holmes,et al.  Laminated dry film resist for microengineering applications , 1996 .

[6]  R. Syms Equilibrium of hinged and hingeless structures rotated using surface tension forces , 1995 .

[7]  E. Yeatman,et al.  Demonstration of three-dimensional microstructure self-assembly , 1995 .

[8]  Yotaro Hatamura,et al.  Integration of 3-D shape construction and assembly to realize micro systems , 1995 .

[9]  L. Paratte,et al.  Low-cost Technology For Multilayer Electroplated Parts Using Laminated Dry Film Resist , 1995, Proceedings of the International Solid-State Sensors and Actuators Conference - TRANSDUCERS '95.

[10]  N. F. de Rooij,et al.  Numerical simulations of planar electrostatic wobble motors , 1995 .

[11]  K. Hesch,et al.  Combination of excimer laser micromachining and replication processes suited for large scale production , 1995 .

[12]  Ming C. Wu,et al.  Micromachined integrated optics for free-space interconnections , 1995, Proceedings IEEE Micro Electro Mechanical Systems. 1995.

[13]  H. Yeh,et al.  Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates , 1994, IEEE Photonics Technology Letters.

[14]  N. F. de Rooij,et al.  Electrodeposited Electrostatic Rigid-Rotor Wobble Motors on Silicon , 1994 .

[15]  J. D. Rush,et al.  Hybrid integration of a laser diode with a planar silica waveguide , 1994 .

[16]  G.-A. Racine,et al.  Microfabrication of 3D multidirectional inclined structures by UV lithography and electroplating , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[17]  Richard S. Muller,et al.  Piezoelectric microphone with on-chip CMOS circuits , 1993 .

[18]  A. B. Frazier,et al.  Metallic microstructures fabricated using photosensitive polyimide electroplating molds , 1993 .

[19]  H. Reichl,et al.  Fabrication of high depth-to-width aspect ratio microstructures , 1992, [1992] Proceedings IEEE Micro Electro Mechanical Systems.

[20]  W. Ehrfeld,et al.  Three-dimensional microfabrication using synchrotron radiation , 1991 .

[21]  R. Howe,et al.  Thermal assembly of polysilicon microstructures , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[22]  Albert P. Pisano,et al.  Self-adjusting microstructures (SAMS) , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[23]  W. Menz,et al.  The LIGA technique-A novel concept for microstructures and the combination with Si-technologies by injection molding , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[24]  T. Christenson,et al.  Fabrication of assembled micromechanical components via deep X-ray lithography , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[25]  P. Ballard,et al.  Physical study of laser-produced plasma in confined geometry , 1990 .

[26]  G. Arthur,et al.  Deep UV optics for excimer laser systems , 1990 .

[27]  Roger T. Howe,et al.  Process Integration for active polysilicon resonant microstructures , 1989 .

[28]  M. Mehregany,et al.  Integrated fabrication of polysilicon mechanisms , 1988 .

[29]  Yu-Chong Tai,et al.  Integrated movable micromechanical structures for sensors and actuators , 1988 .

[30]  R. F. Harrison,et al.  Impulse coupling to targets in vacuum by KrF, HF, and CO2 single‐pulse lasers , 1988 .

[31]  R. D. Griffin,et al.  Interferometric studies of the pressure of a confined laser‐heated plasma , 1986 .

[32]  P. Dyer,et al.  Excimer laser ablation and thermal coupling efficiency to polymer films , 1985 .

[33]  Robert B. Raphael,et al.  Review Of Impulse Coupling With Materials , 1984, Other Conferences.

[34]  K.E. Petersen,et al.  Silicon as a mechanical material , 1982, Proceedings of the IEEE.

[35]  Iroon Polytechniou Influence of cultivation temperature on the ligninolytic activity of selected fungal strains , 2006 .

[36]  R. Lawes,et al.  The formation of moulds for 3 D microstructures using excimer laser ablation , 1996 .

[37]  Stella W. Pang,et al.  HIGH ASPECT RATIO POLYIMIDE ETCHING USING AN OXYGEN PLASMA GENERATED BY ELECTRON CYCLOTRON RESONANCE SOURCE , 1994 .

[38]  A. Engelsberg Removal of Microcontaminants From Surfaces Using a Chemicalfree, Laser-Assisted Process , 1994 .

[39]  J. Miller,et al.  Laser ablation : principles and applications , 1994 .

[40]  A. D. Zweig,et al.  Shock waves generated by confined XeCl excimer laser ablation of polyimide , 1992 .

[41]  Kensall D. Wise,et al.  Integrated microelectromechanical systems: A perspective on MEMS in the 90s , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[42]  and as an in , 2022 .