In vivo human choroidal vascular pattern visualization using high-speed swept-source optical coherence tomography at 1060 nm.

PURPOSE To investigate the retinal and choroidal vascular pattern, structure, and thickness using high-speed, high axial resolution, swept-source optical coherence tomography (SS-OCT) at 1060 nm, demonstrating enhanced penetration through all choroidal layers. METHODS An ophthalmic SS-OCT system was developed operating at 57,000 A-lines/s with 5.9 μm axial resolution and was used to collect 3D images with scanning angles up to ∼70° × 35°. The similar features were observed in the choroidal layers by imaging three healthy volunteers. En face images, extracted at different depths, capture features of the retinal and choroidal vasculature networks and substructure. Retinal and choroidal thicknesses were measured over scanning angles of ∼14° × 14°, yielding retinal and choroidal thickness maps. RESULTS The retinal layers, choriocapillaris (CC), Sattler's layer (SL), Haller's layer (HL), and the lamina suprachoroid layer (LSL) were delineated in 2D sagittal tomograms. The sagittal tomograms and en face reflectance images over a 2-cm(2) field of view captured the paraoptic, lateral and medial distal short posterior ciliary artery (SPCA) branches as well as the two lateral and medial long posterior ciliary arteries (LPCAs). En face images in the HL revealed the superotemporal, inferotemporal, superonasal, and inferonasal major choroidal vessels. CONCLUSIONS High-speed, high-resolution SS-OCT centered at 1060 nm enables retinal and choroidal vasculature networks visualization, including retina vessels, posterior ciliary artery (PCA) branches, and venous vascular patterns. This technology offers diagnostic opportunities by monitoring change in these networks, substructure, and retinal and choroidal thicknesses during disease initiation and progression.

[1]  E. Stefánsson,et al.  The impact of ocular blood flow in glaucoma , 2002, Progress in Retinal and Eye Research.

[2]  Angelika Unterhuber,et al.  Ultrahigh resolution optical coherence tomography of the monkey fovea. Identification of retinal sublayers by correlation with semithin histology sections. , 2004, Experimental eye research.

[3]  R S Sobel,et al.  Fluorescein angiography complication survey. , 1986, Ophthalmology.

[4]  S. Hayreh The long posterior ciliary arteries , 2004, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[5]  S. Yun,et al.  High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. , 2003, Optics letters.

[6]  Sohan Singh Hayreh,et al.  The choriocapillaris , 2004, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[7]  E S Gragoudas,et al.  Adverse reactions due to indocyanine green. , 1994, Ophthalmology.

[8]  Robert J Zawadzki,et al.  Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique. , 2009, Optics express.

[9]  Harald Sattmann,et al.  Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. , 2003, Investigative ophthalmology & visual science.

[10]  W. Drexler,et al.  In vivo retinal optical coherence tomography at 1040 nm - enhanced penetration into the choroid. , 2005, Optics express.

[11]  B. Grimson,et al.  Angioarchitecture of the ciliary artery circulation of the posterior pole. , 1981, Archives of ophthalmology.

[12]  Hui Rong Zhang,et al.  Scanning electron-microscopic study of corrosion casts on retinal and choroidal angioarchitecture in man and animals , 1994, Progress in Retinal and Eye Research.

[13]  Maciej Wojtkowski,et al.  Real-time in vivo ophthalmic imaging by ultrafast spectral optical coherence tomography , 2003, SPIE BiOS.

[14]  Teresa C. Chen,et al.  Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography. , 2004, Optics express.

[15]  S. Hayreh Anterior Ischemic Optic Neuropathy , 1975, Springer Berlin Heidelberg.

[16]  E. Friedman A hemodynamic model of the pathogenesis of age-related macular degeneration. , 1997, American journal of ophthalmology.

[17]  Boris Hermann,et al.  Wide-field optical coherence tomography of the choroid in vivo. , 2008, Investigative ophthalmology & visual science.

[18]  T. Yatagai,et al.  In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. , 2007, Optics express.

[19]  S. Hayreh Submacular choroidal vascular pattern , 1974, Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie.

[20]  A. Fercher,et al.  Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. , 2003, Optics express.

[21]  G. Ziegelberger,et al.  International commission on non-ionizing radiation protection. , 2006, Progress in biophysics and molecular biology.

[22]  Srinivas R Sadda,et al.  Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[23]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[24]  J. Donald M. Gass Stereoscopic atlas of macular diseases , 1977 .

[25]  W. Drexler,et al.  Three-dimensional 1060-nm OCT: choroidal thickness maps in normal subjects and improved posterior segment visualization in cataract patients. , 2010, Investigative ophthalmology & visual science.

[26]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[27]  S. Yun,et al.  In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. , 2004, Optics express.

[28]  S. Yun,et al.  In vivo optical frequency domain imaging of human retina and choroid. , 2006, Optics express.

[29]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[30]  Masahiro Akiba,et al.  Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[31]  S. Hayreh Posterior ciliary artery circulation in health and disease: the Weisenfeld lecture. , 2004, Investigative ophthalmology & visual science.

[32]  Iwona Gorczynska,et al.  Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. , 2008, Investigative ophthalmology & visual science.

[33]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[34]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[35]  S. Yoneya,et al.  Asymmetry of choroidal venous vascular patterns in the human eye. , 2004, Ophthalmology.