High-temperature compression behavior of Mo–Si–B alloys
暂无分享,去创建一个
[1] B. Bewlay,et al. A review of very-high-temperature Nb-silicide-based composites , 2003 .
[2] J. Lewandowski,et al. Ultrahigh-Temperature Nb-Silicide-Based Composites , 2003 .
[3] D. Dimiduk,et al. Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .
[4] N. Nomura,et al. Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures , 2003 .
[5] M. Yamaguchi,et al. Room temperature fracture toughness and high temperature strength of T2/Moss and (Mo,Nb)ss/T1/T2 eutectic alloys in the Mo–Si–B system , 2003 .
[6] J. Schneibel. High temperature strength of Mo–Mo3Si–Mo5SiB2 molybdenum silicides , 2003 .
[7] R. Ritchie,et al. On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C) , 2003 .
[8] Joonsik Park. Coating designs for oxidation control of Mo–Si–B alloys , 2002 .
[9] Katsushi Tanaka,et al. Mechanical properties of Mo5SiB2 single crystals , 2002 .
[10] D. Dimiduk,et al. Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys , 2002 .
[11] M. Kramer,et al. A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .
[12] R. Zee,et al. Yielding and flow behavior of Mo5Si3 single crystals , 2001 .
[13] S. Nemat-Nasser,et al. A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum , 2001 .
[14] K. Ito,et al. Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system , 2001 .
[15] R. Ritchie,et al. Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic , 2000 .
[16] J. Schneibel,et al. Stoichiometry and mechanical properties of Mo3Si , 2000 .
[17] R. Sakidja,et al. The formation of Mo precipitates in a supersaturated Mo5SiB2 intermetallic phase , 1999 .
[18] B. Bewlay,et al. Processing high-temperature refractory-metal silicide in-situ composites , 1999 .
[19] D. P. Mason,et al. On the creep of directionally solidified MoSi2-Mo5Si3 eutectics , 1995 .
[20] G. Kostorz,et al. Microstructure and plasticity of two molybdenum-base alloys (TZM) , 1993 .
[21] W. Boettinger,et al. Application of ternary phase diagrams to the development of MoSi2-based materials , 1992 .
[22] A. Vasudévan,et al. A comparative overview of molybdenum disilicide composites , 1992 .
[23] Subra Suresh,et al. An experimental and numerical study of deformation in metal-ceramic composites , 1989 .
[24] T. Nieh,et al. Deformation of a multiphase Mo–9.4Si–13.8B alloy at elevated temperatures , 2001 .
[25] R. N. Wright,et al. Processing and mechanical properties of a molybdenum silicide with the composition Mo–12Si–8.5B (at.%) , 2001 .
[26] Sungtae Kim,et al. Phase Stability in Processing and Microstructure Control in High Temperature Mo-Si-B Alloys , 2000 .
[27] G. Wilde,et al. Microstructural Development of Mo(ss) + T2 Two-Phase Alloys , 1998 .
[28] M. Kramer,et al. Compressive creep behavior of Mo5Si3 with the addition of boron , 1996 .
[29] C. J. Smithells,et al. Smithells metals reference book , 1949 .