High-temperature compression behavior of Mo–Si–B alloys

[1]  B. Bewlay,et al.  A review of very-high-temperature Nb-silicide-based composites , 2003 .

[2]  J. Lewandowski,et al.  Ultrahigh-Temperature Nb-Silicide-Based Composites , 2003 .

[3]  D. Dimiduk,et al.  Mo-Si-B Alloys: Developing a Revolutionary Turbine-Engine Material , 2003 .

[4]  N. Nomura,et al.  Thermal expansion, strength and oxidation resistance of Mo/Mo5SiB2 in-situ composites at elevated temperatures , 2003 .

[5]  M. Yamaguchi,et al.  Room temperature fracture toughness and high temperature strength of T2/Moss and (Mo,Nb)ss/T1/T2 eutectic alloys in the Mo–Si–B system , 2003 .

[6]  J. Schneibel High temperature strength of Mo–Mo3Si–Mo5SiB2 molybdenum silicides , 2003 .

[7]  R. Ritchie,et al.  On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 °C to 1300 °C) , 2003 .

[8]  Joonsik Park Coating designs for oxidation control of Mo–Si–B alloys , 2002 .

[9]  Katsushi Tanaka,et al.  Mechanical properties of Mo5SiB2 single crystals , 2002 .

[10]  D. Dimiduk,et al.  Oxidation mechanisms in Mo-reinforced Mo5SiB2(T2)–Mo3Si alloys , 2002 .

[11]  M. Kramer,et al.  A Mo–Si–B intermetallic alloy with a continuous α-Mo matrix , 2002 .

[12]  R. Zee,et al.  Yielding and flow behavior of Mo5Si3 single crystals , 2001 .

[13]  S. Nemat-Nasser,et al.  A unified constitutive model for strain-rate and temperature dependent behavior of molybdenum , 2001 .

[14]  K. Ito,et al.  Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system , 2001 .

[15]  R. Ritchie,et al.  Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic , 2000 .

[16]  J. Schneibel,et al.  Stoichiometry and mechanical properties of Mo3Si , 2000 .

[17]  R. Sakidja,et al.  The formation of Mo precipitates in a supersaturated Mo5SiB2 intermetallic phase , 1999 .

[18]  B. Bewlay,et al.  Processing high-temperature refractory-metal silicide in-situ composites , 1999 .

[19]  D. P. Mason,et al.  On the creep of directionally solidified MoSi2-Mo5Si3 eutectics , 1995 .

[20]  G. Kostorz,et al.  Microstructure and plasticity of two molybdenum-base alloys (TZM) , 1993 .

[21]  W. Boettinger,et al.  Application of ternary phase diagrams to the development of MoSi2-based materials , 1992 .

[22]  A. Vasudévan,et al.  A comparative overview of molybdenum disilicide composites , 1992 .

[23]  Subra Suresh,et al.  An experimental and numerical study of deformation in metal-ceramic composites , 1989 .

[24]  T. Nieh,et al.  Deformation of a multiphase Mo–9.4Si–13.8B alloy at elevated temperatures , 2001 .

[25]  R. N. Wright,et al.  Processing and mechanical properties of a molybdenum silicide with the composition Mo–12Si–8.5B (at.%) , 2001 .

[26]  Sungtae Kim,et al.  Phase Stability in Processing and Microstructure Control in High Temperature Mo-Si-B Alloys , 2000 .

[27]  G. Wilde,et al.  Microstructural Development of Mo(ss) + T2 Two-Phase Alloys , 1998 .

[28]  M. Kramer,et al.  Compressive creep behavior of Mo5Si3 with the addition of boron , 1996 .

[29]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .