Thermal and laser properties of Yb:LuAG for kW thin disk lasers.

Thin disk laser experiments with Yb:LuAG (Yb:Lu(3)Al(5)O(12)) were performed leading to 5 kW of output power and an optical-to-optical efficiency exceeding 60%. Comparative analyses of the laser relevant parameters of Yb:LuAG and Yb:YAG were carried out. While the spectroscopic properties were found to be nearly identical, investigations of the thermal conductivities revealed a 20% higher value for Yb:LuAG at Yb(3+)-doping concentrations of about 10%. Due to the superior thermal conductivity with respect to Yb:YAG, Yb:LuAG offers thus the potential of improved performance in high power thin disk laser applications.

[1]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[2]  K. Petermann,et al.  227-fs pulses from a mode-locked Yb:LuScO3 thin disk laser , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[3]  Jun Xu,et al.  Structural, thermal, and luminescent properties of Yb-doped Y 3 Al 5 O 12 crystals , 2004 .

[4]  R. Buchanan,et al.  Energy Levels of Yb 3 + in Gallium and Aluminum Garnets. I. Spectra , 1967 .

[5]  Günter Huber,et al.  Rare-earth-doped sesquioxides , 2000 .

[6]  Stephen A. Payne,et al.  Laser demonstration of Yb/sub 3/Al/sub 5/O/sub 12/ (YbAG) and materials properties of highly doped Yb:YAG , 2001 .

[7]  D. Wood Energy Levels of Yb3+ in Garnets , 1963 .

[8]  H. Okamoto The Ir-Re (Iridium-Rhenium) system , 1992 .

[9]  A. Meijerink,et al.  Spectral-line-broadening study of the trivalent lanthanide-ion series.II. The variation of the electron-phonon coupling strength through the series , 1997 .

[10]  Günter Huber,et al.  High quantum efficiency YbAG-crystals , 2007 .

[11]  A. Giesen,et al.  Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[13]  Günter Huber,et al.  Broadly tunable high-power Yb:Lu(2)O(3) thin disk laser with 80% slope efficiency. , 2007, Optics express.

[14]  Klaus Petermann,et al.  Model for the calculation of radiation trapping and description of the pinhole method. , 2007, Optics letters.

[15]  M. Karszewski,et al.  Theoretical modelling and experimental investigations of the diode-pumped thin-disk Yb : YAG laser , 1999 .

[16]  Hiroki Sato,et al.  Spectroscopic properties of Yb3+: LuLiF4 crystal grown by the Czochralski method for laser applications and evaluation of quenching processes: a comparison with Yb3+: YLiF4 , 2004 .

[17]  A. G. Petrosyan,et al.  Growth, spectroscopic, and laser properties of Yb 3+ -doped Lu 3 Al 5 O 12 garnet crystal , 2006 .

[18]  Daniel Vivien,et al.  A simple model for the prediction of thermal conductivity in pure and doped insulating crystals , 2003 .

[19]  Bien Chann,et al.  Cryogenic Yb$^{3+}$-Doped Solid-State Lasers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  K. Petermann,et al.  Crystal growth by the heat exchanger method, spectroscopic characterization and laser operation of high-purity Yb:Lu2O3 , 2008 .

[21]  N. Ishizawa,et al.  Crystal growth and properties of (Lu,Y)3Al5O12 , 2004 .

[22]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[23]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[24]  K. Petermann,et al.  Efficient continuous-wave thin disk laser operation of Yb:Ca_4YO(BO_3)_3 in E∥Z and E∥X orientations with 26 W output power , 2009 .

[25]  K Ueda,et al.  Tunable Continuous-Wave Yb:YLF Laser Operation with a Diode-Pumped Chirped-Pulse Amplification System. , 2001, Applied optics.

[26]  M. Jiang,et al.  High-power laser performance of a-cut and c-cut Yb:LuVO 4 crystals , 2006 .

[27]  G. A. Slack,et al.  Thermal Conductivity of Garnets and Phonon Scattering by Rare-Earth Ions , 1971 .

[28]  S. Wada,et al.  Thermal conductivity/diffusivity of Nd3+ doped GdVO4, YVO4, LuVO4, and Y3Al5O12 by temperature wave analysis , 2008 .

[29]  J. Koningstein Energy levels and crystal-field calculations of trivalent ytterbium in yttrium aluminum garnet and yttrium gallium garnet , 1965 .

[30]  Tyler B. Coplen,et al.  Atomic weights of the elements 1999 (IUPAC Technical Report) , 2001 .

[31]  N. Padture,et al.  Low Thermal Conductivity in Garnets , 2005 .

[32]  J. Caslavsky,et al.  Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis , 1980 .

[33]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[34]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[35]  Marcel Schultze,et al.  Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime. , 2008, Optics letters.

[36]  J. Bruce,et al.  Oxygen coordinates of compounds with garnet structure , 1965 .

[37]  K. Petermann,et al.  Continuous-wave high power laser operation and tunability of Yb:LaSc3(BO3)4 in thin disk configuration , 2007 .