Mathematical Model I: Static Intentional Risk

As we have presented in Chap. 1, two different types of risk related to Intentional Risk are identified: The Static Risk and the Dynamic Risk. Roughly speaking, we can summarize their differences as follows: Static Risk: It is opportunistic risk. Its main feature is that this risk follows authorized paths. A clear example of this type of risk is when employees or contractors take data they have authorized access to and use it for personal gain. Dynamic Risk: It is the type of directed intentional risk. It can be identified because of its tendency to follow unauthorized paths. The paradigm for this system is represented by the use of a vulnerability in the system to gain technical or administrative accesses. In other words, Dynamic Risk is directly linked to the use of potentially existing paths (but not authorized) in the network. An example of dynamic risk would be an intrusion to a network by external hackers.

[1]  J. Gómez-Gardeñes,et al.  Maximal-entropy random walks in complex networks with limited information. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Vittorio Rosato,et al.  Growth mechanisms of the AS-level Internet network , 2004 .

[3]  Frank Harary,et al.  Graph Theory , 2016 .

[4]  Piet Van Mieghem,et al.  Performance analysis of communications networks and systems , 2006 .

[5]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[6]  M. Weigt,et al.  On the properties of small-world network models , 1999, cond-mat/9903411.

[7]  Azer Bestavros,et al.  A Framework for the Evaluation and Management of Network Centrality , 2011, SDM.

[8]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[9]  David I Blockley,et al.  Vulnerability of structural systems , 2003 .

[10]  Miguel Romance,et al.  Effective measurement of network vulnerability under random and intentional attacks , 2005, J. Math. Model. Algorithms.

[11]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[12]  Vladimir Batagelj,et al.  Spectral centrality measures in temporal networks , 2015, Ars Math. Contemp..

[13]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[14]  A. Jamakovic,et al.  On the relationship between the algebraic connectivity and graph's robustness to node and link failures , 2007, 2007 Next Generation Internet Networks.

[15]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[16]  Miguel Romance,et al.  Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis , 2015, Networks Heterog. Media.

[17]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[18]  Silvia Gago,et al.  Spectral Techniques in Complex Networks , 2011 .

[19]  S. Borgatti,et al.  The centrality of groups and classes , 1999 .

[20]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[21]  Miguel Romance,et al.  New results on computable efficiency and its stability for complex networks , 2006 .

[22]  P. Bonacich Factoring and weighting approaches to status scores and clique identification , 1972 .

[23]  Panos M. Pardalos,et al.  Selected Topics in Critical Element Detection , 2012 .

[24]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  Ake J Holmgren,et al.  Using Graph Models to Analyze the Vulnerability of Electric Power Networks , 2006, Risk analysis : an official publication of the Society for Risk Analysis.

[27]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[28]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[29]  M E Newman,et al.  Scientific collaboration networks. I. Network construction and fundamental results. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Renaud Lambiotte,et al.  Line graphs of weighted networks for overlapping communities , 2010 .

[31]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[32]  V. Gol'dshtein,et al.  Vulnerability and Hierarchy of Complex Networks , 2004, cond-mat/0409298.

[33]  Massimo Marchiori,et al.  Economic small-world behavior in weighted networks , 2003 .

[34]  László Csató,et al.  Distance-based accessibility indices , 2015, ArXiv.

[35]  D. Volchenkov,et al.  Transport Networks Revisited: Why Dual Graphs? , 2007, 0710.5494.

[36]  B. Bollobás The evolution of random graphs , 1984 .

[37]  V. Latora,et al.  Centrality in networks of urban streets. , 2006, Chaos.

[38]  Miguel Romance,et al.  Analytical relationships between metric and centrality measures of a network and its dual , 2011, J. Comput. Appl. Math..

[39]  V. Latora,et al.  Efficiency of scale-free networks: error and attack tolerance , 2002, cond-mat/0205601.

[40]  Katja Berdica,et al.  AN INTRODUCTION TO ROAD VULNERABILITY: WHAT HAS BEEN DONE, IS DONE AND SHOULD BE DONE , 2002 .

[41]  V. Latora,et al.  Multiscale vulnerability of complex networks. , 2007, Chaos.

[42]  Heiko Rieger,et al.  Random walks on complex networks. , 2004, Physical review letters.

[43]  M. Serrano,et al.  Generalized percolation in random directed networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  D. Cvetkovic,et al.  Recent Results in the Theory of Graph Spectra , 2012 .

[45]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[46]  Joseph Rudnick,et al.  Elements of the random walk , 2004 .

[47]  Massimo Marchiori,et al.  Vulnerability and protection of infrastructure networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[49]  Panos M. Pardalos,et al.  An integer programming approach for finding the most and the least central cliques , 2015, Optim. Lett..

[50]  David I Blockley,et al.  VULNERABILITY OF SYSTEMS , 2001 .

[51]  Jesús Gómez-Gardeñes,et al.  A mathematical model for networks with structures in the mesoscale , 2010, Int. J. Comput. Math..

[52]  Guanrong Chen,et al.  Complex networks: small-world, scale-free and beyond , 2003 .

[53]  Miguel Romance,et al.  A Node-Based Multiscale Vulnerability of Complex Networks , 2009, Int. J. Bifurc. Chaos.

[54]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[56]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[57]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[58]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[59]  Panos M. Pardalos,et al.  Detecting critical nodes in sparse graphs , 2009, Comput. Oper. Res..

[60]  J. Anez,et al.  Dual graph representation of transport networks , 1996 .

[61]  Ljupco Kocarev,et al.  Vulnerability of labeled networks , 2010 .

[62]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[63]  Phillip Bonacich,et al.  Eigenvector-like measures of centrality for asymmetric relations , 2001, Soc. Networks.

[64]  A. Arenas,et al.  Community analysis in social networks , 2004 .

[65]  Miguel Romance,et al.  Structural properties of the line-graphs associated to directed networks , 2012, Networks Heterog. Media.

[66]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[67]  Piet Van Mieghem,et al.  On the Robustness of Complex Networks by Using the Algebraic Connectivity , 2008, Networking.

[68]  Albert-László Barabási,et al.  Internet: Diameter of the World-Wide Web , 1999, Nature.

[69]  Stefano Boccaletti,et al.  Vulnerability and Fall of Efficiency in Complex Networks: a New Approach with Computational Advantages , 2009, Int. J. Bifurc. Chaos.

[70]  V. Latora,et al.  Centrality measures in spatial networks of urban streets. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[71]  Miguel Romance,et al.  Structural Vulnerability and Robustness in Complex Networks: Different Approaches and Relationships Between them , 2012 .

[72]  Zhejing Bao,et al.  Comparison of cascading failures in small-world and scale-free networks subject to vertex and edge attacks , 2009 .

[73]  V. Latora,et al.  The Network Analysis of Urban Streets: A Primal Approach , 2006 .

[74]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[75]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[76]  S. Strogatz Exploring complex networks , 2001, Nature.

[77]  H E Stanley,et al.  Classes of small-world networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[79]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[80]  Nelly Litvak,et al.  PageRank in Scale-Free Random Graphs , 2014, WAW.

[81]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  A. Gibbons Algorithmic Graph Theory , 1985 .

[83]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[84]  T. S. Evans,et al.  Complex networks , 2004 .

[85]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[86]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[87]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[88]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[89]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[90]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[91]  F. Pedroche,et al.  MÉTODOS DE CÁLCULO DEL VECTOR PAGERANK , 2008 .

[92]  P. Tetali Random walks and the effective resistance of networks , 1991 .

[93]  Massimo Marchiori,et al.  How the science of complex networks can help developing strategies against terrorism , 2004 .

[94]  Julio M. Ottino,et al.  Complex networks , 2004, Encyclopedia of Big Data.

[95]  Réka Albert,et al.  Structural vulnerability of the North American power grid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  V Latora,et al.  Efficient behavior of small-world networks. , 2001, Physical review letters.

[97]  Rui Jiang,et al.  Urban traffic simulated from the dual representation: Flow, crisis and congestion , 2009 .

[98]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[99]  Anthony H. Dekker,et al.  Network Robustness and Graph Topology , 2004, ACSC.

[100]  Hongzhong Deng,et al.  Vulnerability of complex networks under intentional attack with incomplete information , 2007 .

[101]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[102]  Robin J. Wilson Introduction to Graph Theory , 1974 .

[103]  R. Criado,et al.  A Perron-Frobenius theory for block matrices associated to a multiplex network , 2014, 1411.7757.

[104]  Bojan Mohar,et al.  Laplace eigenvalues of graphs - a survey , 1992, Discret. Math..

[105]  Eduardo L. Pasiliao,et al.  Critical nodes for distance‐based connectivity and related problems in graphs , 2015, Networks.

[106]  M. Newman,et al.  Finding community structure in networks using the eigenvectors of matrices. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[107]  Shichao Yang Exploring complex networks by walking on them. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  Beom Jun Kim,et al.  Attack vulnerability of complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[109]  Eduardo L. Pasiliao,et al.  An integer programming framework for critical elements detection in graphs , 2014, J. Comb. Optim..

[110]  Ana Paula Couto da Silva,et al.  On the joint dynamics of network diameter and spectral gap under node removal , 2010 .

[111]  Regino Criado,et al.  Choosing a leader on a complex network , 2007 .

[112]  Carlos H. C. Ribeiro,et al.  A framework for vulnerability management in complex networks , 2009, 2009 International Conference on Ultra Modern Telecommunications & Workshops.

[113]  V. Latora,et al.  A measure of centrality based on network efficiency , 2004, cond-mat/0402050.

[114]  R. Lambiotte,et al.  Line graphs, link partitions, and overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.