The Tides of Enceladus' Porous Core

The inferred density of Enceladus' core, together with evidence of hydrothermal activity within the moon, suggests that the core is porous. Tidal dissipation in an unconsolidated core has been proposed as the main source of Enceladus' geological activity. However, the tidal response of its core has generally been modeled assuming it behaves viscoelastically rather than poroviscoelastically. In this work, we analyze the poroviscoelastic response to better constrain the distribution of tidal dissipation within Enceladus. A poroviscoelastic body has a different tidal response than a viscoelastic one; pressure within the pores alters the stress field and induces a Darcian porous flow. This flow represents an additional pathway for energy dissipation. Using Biot's theory of poroviscoelasticity, we develop a new framework to obtain the tidal response of a spherically symmetric, self‐gravitating moon with porous layers and apply it to Enceladus. We show that the boundary conditions at the interface of the core and overlying ocean play a key role in the tidal response. The ocean hinders the development of a large‐amplitude Darcian flow, making negligible the Darcian contribution to the dissipation budget. We therefore infer that Enceladus' core can be the source of its geological activity only if it has a low rigidity and a very low viscosity. A future mission to Enceladus could test this hypothesis by measuring the phase lags of tidally induced changes of gravitational potential and surface displacements.

[1]  A. Rhoden,et al.  The case for an ocean-bearing Mimas from tidal heating analysis , 2022, Icarus.

[2]  M. Běhounková,et al.  Enceladus' Tiger Stripes as Frictional Faults: Effect on Stress and Heat Production , 2021, Geophysical Research Letters.

[3]  M. Panning,et al.  Exploration of Icy Ocean Worlds Using Geophysical Approaches , 2021, The Planetary Science Journal.

[4]  R. Tyler Heating of Enceladus due to the dissipation of ocean tides , 2020 .

[5]  C. Sotin,et al.  A Recipe for the Geophysical Exploration of Enceladus , 2020, Bulletin of the AAS.

[6]  I. Matsuyama,et al.  Powering the Galilean Satellites with Moon‐Moon Tides , 2020, Geophysical Research Letters.

[7]  F. Nimmo,et al.  Heat Production and Tidally Driven Fluid Flow in the Permeable Core of Enceladus , 2020, Journal of Geophysical Research: Planets.

[8]  T. Gerkema,et al.  Tides in subsurface oceans with meridional varying thickness , 2020, Icarus.

[9]  R. Katz,et al.  Magmatic Intrusions Control Io's Crustal Thickness , 2020, Journal of Geophysical Research: Planets.

[10]  A. Correia,et al.  Andrade rheology in time-domain. Application to Enceladus' dissipation of energy due to forced libration , 2019, Icarus.

[11]  T. Mittal,et al.  Enceladus's ice shell structure as a window on internal heat production , 2019, Icarus.

[12]  V. Dehant,et al.  Internal Energy Dissipation in Enceladus's Subsurface Ocean From Tides and Libration and the Role of Inertial Waves , 2019, Journal of Geophysical Research: Planets.

[13]  M. Beuthe Enceladus's crust as a non-uniform thin shell: II tidal dissipation , 2019, Icarus.

[14]  T. Gerkema,et al.  Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus? , 2019, Icarus.

[15]  Jaroslav Hron,et al.  Tidal dissipation in Enceladus' uneven, fractured ice shell , 2019, Icarus.

[16]  I. Matsuyama,et al.  Nonlinear tidal dissipation in the subsurface oceans of Enceladus and other icy satellites , 2019, Icarus.

[17]  D. Strobel,et al.  MHD Modeling of the Plasma Interaction With Io's Asymmetric Atmosphere , 2018, Journal of Geophysical Research: Space Physics.

[18]  Alec Wilson,et al.  Can libration maintain Enceladus's ocean? , 2018, Earth and Planetary Science Letters.

[19]  I. Matsuyama,et al.  Ocean tidal heating in icy satellites with solid shells , 2018, Icarus.

[20]  Gabriel Tobie,et al.  Powering prolonged hydrothermal activity inside Enceladus , 2017 .

[21]  J. Renaud,et al.  Increased Tidal Dissipation Using Advanced Rheological Models: Implications for Io and Tidally Active Exoplanets , 2017, 1707.06701.

[22]  M. Běhounková,et al.  Tidal effects in differentiated viscoelastic bodies: a numerical approach , 2017 .

[23]  Mark E. Perry,et al.  Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes , 2017, Science.

[24]  D. Blankenship,et al.  Assessing the potential for measuring Europa's tidal Love number h 2 using radar sounder and topographic imager data , 2017 .

[25]  P. Feldman,et al.  Constraints on Io's interior from auroral spot oscillations , 2017 .

[26]  F. Nimmo,et al.  Journal of Geophysical Research: Planets A test for Io’s magma ocean: Modeling tidal dissipation with a partially molten mantle , 2016 .

[27]  A. Rivoldini,et al.  Enceladus's and Dione's floating ice shells supported by minimum stress isostasy , 2016, 1610.00548.

[28]  M. Beuthe Crustal control of dissipative ocean tides in Enceladus and other icy moons , 2016, 1608.08488.

[29]  A. Stark,et al.  Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags , 2016 .

[30]  Gabriel Tobie,et al.  Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data , 2016 .

[31]  B. Vermeersen,et al.  Global Dynamics of the Earth: Applications of Viscoelastic Relaxation Theory to Solid-Earth and Planetary Geophysics , 2016 .

[32]  M. Ćuk,et al.  DYNAMICAL EVIDENCE FOR A LATE FORMATION OF SATURN’S MOONS , 2016, 1603.07071.

[33]  E. Quataert,et al.  Resonance locking as the source of rapid tidal migration in the Jupiter and Saturn moon systems , 2016, 1601.05804.

[34]  A. Fisher,et al.  Three-dimensional models of hydrothermal circulation through a seamount network on fast-spreading crust , 2015, Earth and Planetary Science Letters.

[35]  Jürgen Oberst,et al.  Measuring tidal deformations by laser altimetry. A performance model for the Ganymede Laser Altimeter , 2015 .

[36]  J. A. Burns,et al.  Enceladus's measured physical libration requires a global subsurface ocean , 2015, 1509.07555.

[37]  James H. Roberts,et al.  The fluffy core of Enceladus , 2015 .

[38]  W. Henning,et al.  TIDAL HEATING IN A MAGMA OCEAN WITHIN JUPITER’S MOON Io , 2015 .

[39]  Sascha Kempf,et al.  Ongoing hydrothermal activities within Enceladus , 2015, Nature.

[40]  I. Matsuyama Tidal dissipation in the oceans of icy satellites , 2014 .

[41]  M. Beuthe Tides on Europa: The membrane paradigm , 2014, 1410.4735.

[42]  G. Glatzmaier,et al.  Tidal heating in icy satellite oceans , 2014 .

[43]  H. Hussmann,et al.  Ice rheology and tidal heating of Enceladus , 2013 .

[44]  Erik Asphaug,et al.  Late origin of the Saturn system , 2013 .

[45]  M. Beuthe Spatial patterns of tidal heating , 2012, 1212.4630.

[46]  E. Turner,et al.  ON THE DIRECT IMAGING OF TIDALLY HEATED EXOMOONS , 2012, 1209.4418.

[47]  S. Charnoz,et al.  STRONG TIDAL DISSIPATION IN SATURN AND CONSTRAINTS ON ENCELADUS' THERMAL STATE FROM ASTROMETRY , 2012, 1204.0895.

[48]  B. Vermeersen,et al.  Effects of low-viscous layers and a non-zero obliquity on surface stresses induced by diurnal tides and non-synchronous rotation: The case of Europa , 2011 .

[49]  V. Lainey,et al.  The tidal history of Iapetus: Spin dynamics in the light of a refined dissipation model , 2011 .

[50]  F. Nimmo,et al.  Obliquity tides do not significantly heat Enceladus , 2011 .

[51]  R. Srama,et al.  A salt-water reservoir as the source of a compositionally stratified plume on Enceladus , 2011, Nature.

[52]  C. Russell,et al.  Evidence of a Global Magma Ocean in Io’s Interior , 2011, Science.

[53]  M. Efroimsky TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS , 2011, 1105.3936.

[54]  J. Pearl,et al.  High heat flow from Enceladus' south polar region measured using 10–600 cm−1 Cassini/CIRS data , 2011 .

[55]  Ö. Karatekin,et al.  Librational response of Enceladus , 2010 .

[56]  F. Postberg,et al.  Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus , 2009, Nature.

[57]  R. Tyler Strong ocean tidal flow and heating on moons of the outer planets , 2008, Nature.

[58]  Jennifer M. Brown,et al.  Hydrothermal systems in small ocean planets. , 2007, Astrobiology.

[59]  Re'em Sari,et al.  TIDAL EVOLUTION OF RUBBLE PILES , 2007, 0712.0446.

[60]  J. H. Roberts,et al.  Long-Term Stability of a Subsurface Ocean on Enceladus , 2007 .

[61]  J. Wisdom,et al.  Tidal heating in Enceladus , 2007 .

[62]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[63]  Gabriel Tobie,et al.  Tidal dissipation within large icy satellites: Applications to Europa and Titan , 2005 .

[64]  I. Jackson,et al.  The seismological signature of temperature and grain size variations in the upper mantle , 2005 .

[65]  T. Spohn,et al.  Thermal-orbital evolution of Io and Europa , 2004 .

[66]  V. Dehant,et al.  Influence of the inner core viscosity on the rotational eigenmodes of the Earth , 2000 .

[67]  Garth van der Kamp,et al.  Limits of tidal energy dissipation by fluid flow in subsea formations , 1999 .

[68]  M. Evans,et al.  SHEAR MODULUS AND DAMPING RELATIONSHIPS FOR GRAVELS , 1998 .

[69]  P. Carman Fluid flow through granular beds , 1997 .

[70]  J. Goddard Nonlinear elasticity and pressure-dependent wave speeds in granular media , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[71]  D. R. Poirier,et al.  Conservation of mass and momentum for the flow of interdendritic liquid during solidification , 1990 .

[72]  M. Ross,et al.  Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io , 1988 .

[73]  I. M. Idriss,et al.  Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils , 1986 .

[74]  D. McKenzie,et al.  The Generation and Compaction of Partially Molten Rock , 1984 .

[75]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[76]  Charles F. Yoder,et al.  How tidal heating in Io drives the galilean orbital resonance locks , 1979, Nature.

[77]  P. Cassen,et al.  Melting of Io by Tidal Dissipation , 1979, Science.

[78]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[79]  W. M. Kaula Tidal dissipation by solid friction and the resulting orbital evolution , 1964 .

[80]  N. Kobayashi,et al.  Statical deformations and free oscillations of a model Earth , 1962 .

[81]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[82]  E. N. da C. Andrade,et al.  Über das zähe Fließen in Metallen und verwandte Erscheinungen = On the viscous flow in metals, and allied phenomena , 1910 .

[83]  D. Dirkx,et al.  Tidally Heated Exomoons around Gas Giants , 2021 .

[84]  L. Iess,et al.  The Interior of Enceladus , 2018 .

[85]  I. Matsuyama,et al.  Numerically modelling tidal dissipation with bottom drag in the oceans of Titan and Enceladus , 2017 .

[86]  F. Nimmo,et al.  The thermal and orbital evolution of Enceladus : observational constraints and models , 2017 .

[87]  Peter Kuster,et al.  Principles Of Heat Transfer In Porous Media , 2016 .

[88]  R. Tyler Tidal dynamical considerations constrain the state of an ocean on Enceladus , 2011 .

[89]  M. Grott,et al.  Tidal dissipation in Enceladus , 2006 .

[90]  C. Murray,et al.  Solar System Dynamics: Expansion of the Disturbing Function , 1999 .

[91]  T. Spohn,et al.  Thermal-orbital histories of viscoelastic models of Io (J1) , 1990 .

[92]  M. Saito SOME PROBLEMS OF STATIC DEFORMATION OF THE EARTH , 1974 .

[93]  HighWire Press Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character , 1934 .

[94]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[95]  A. G. Greenhill,et al.  A Treatise on the Mathematical Theory of Elasticity , 1893, Nature.