The evolution of galaxy shapes in CANDELS: from prolate to discy

We model the projected b/a-log a distributions of CANDELS star-forming main-sequence galaxies, where a (b) is the half-light semimajor (semiminor) axis of the galaxy images measured by GALFIT. We find that smaller a galaxies are rounder at all stellar masses M-* and redshifts, so we include a when analysing b/a distributions. Approximating intrinsic shapes of the galaxies as triaxial ellipsoids and assuming amultivariate normal distribution of galaxy size and two shape parameters, we construct their intrinsic shape and size distributions to obtain the fractions of elongated (prolate), discy (oblate), and spheroidal galaxies in each redshift and mass bin. We find that galaxies tend to be prolate at low M-* and high redshifts, and discy at high M-* and low redshifts, qualitatively consistent with van der Wel et al., implying that galaxies tend to evolve from prolate to discy. These results are consistent with the predictions from simulations that the transition from prolate to oblate is caused by a compaction event at a characteristic mass range, making the galaxy centre baryon dominated. We give probabilities of a galaxy's being elongated, discy, or spheroidal as a function of its M-*, redshift, and projected b/a and a, which can facilitate target selections of galaxies with specific shapes at high redshifts.

[1]  C. Carollo,et al.  Evolution of density profiles in high-z galaxies: compaction and quenching inside-out , 2015, 1509.00017.

[2]  Risa H. Wechsler,et al.  The shape of dark matter haloes : dependence on mass, redshift, radius and formation , 2005, astro-ph/0508497.

[3]  B. Weiner,et al.  THE EPOCH OF DISK SETTLING: z ∼ 1 TO NOW , 2012, 1207.7072.

[4]  J. Trump,et al.  KINEMATIC DOWNSIZING AT z ∼ 2 , 2016, 1606.00009.

[5]  J. Trump,et al.  z ∼ 2: An Epoch of Disk Assembly , 2017, 1705.03474.

[6]  L. Cowie,et al.  New Insight on Galaxy Formation and Evolution from Keck Spectroscopy of the Hawaii Deep Fields , 1996, astro-ph/9606079.

[7]  J. Trump,et al.  Demographics of Star-forming Galaxies since z ∼ 2.5. I. The UVJ Diagram in CANDELS , 2017, 1710.05489.

[8]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[9]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1101.3308.

[10]  H. F. Erguson,et al.  THE MORPHOLOGICAL DIVERSITIES AMONG STAR-FORMING GALAXIES AT HIGH REDSHIFTS IN THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY , 2008 .

[11]  A. Fontana,et al.  STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS , 2014, 1412.5180.

[12]  Chien Y. Peng,et al.  DETAILED DECOMPOSITION OF GALAXY IMAGES. II. BEYOND AXISYMMETRIC MODELS , 2009, 0912.0731.

[13]  E. Decenciere,et al.  Deep learning for galaxy surface brightness profile fitting , 2017, Monthly Notices of the Royal Astronomical Society.

[14]  M. Huertas-Company,et al.  Deep Learning Identifies High-z Galaxies in a Central Blue Nugget Phase in a Characteristic Mass Range , 2018, 1804.07307.

[15]  J. Primack,et al.  Accelerating dust temperature calculations with graphics-processing units , 2009, 0907.3768.

[16]  H. Rix,et al.  A CONSTANT LIMITING MASS SCALE FOR FLAT EARLY-TYPE GALAXIES FROM z ∼ 1 TO z = 0: DENSITY EVOLVES BUT SHAPES DO NOT , 2011, 1108.6086.

[17]  A. Fontana,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS COSMOS SURVEY FIELD , 2016, 1612.07364.

[18]  C. Carollo,et al.  The confinement of star-forming galaxies into a main sequence through episodes of gas compaction, depletion and replenishment , 2015, 1509.02529.

[19]  A. Fontana,et al.  CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip , 2017, 1703.05768.

[20]  David R. Law,et al.  AN HST/WFC3-IR MORPHOLOGICAL SURVEY OF GALAXIES AT z = 1.5–3.6. I. SURVEY DESCRIPTION AND MORPHOLOGICAL PROPERTIES OF STAR-FORMING GALAXIES , 2011, 1107.3137.

[21]  A. Dekel,et al.  Formation and settling of a disc galaxy during the last 8 billion years in a cosmological simulation , 2016, 1608.02114.

[22]  H. Rix,et al.  STRUCTURAL EVOLUTION OF EARLY-TYPE GALAXIES TO z = 2.5 IN CANDELS , 2013, 1305.6931.

[23]  B. Groves,et al.  High-resolution panchromatic spectral models of galaxies including photoionization and dust , 2009, 0906.2156.

[24]  P. Jonsson sunrise: polychromatic dust radiative transfer in arbitrary geometries , 2006, astro-ph/0604118.

[25]  H. Rix,et al.  What Do We Learn from IRAC Observations of Galaxies at 2 < z < 3.5? , 2006, astro-ph/0609548.

[26]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[27]  Guillermo Barro,et al.  Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets , 2014, 1412.4783.

[28]  M. Franx,et al.  SUBMITTED TO THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 10/09/06 DETECTION OF QUIESCENT GALAXIES IN A BICOLOR SEQUENCE FROM Z = 0 − 2 , 2022 .

[29]  Kirpal Nandra,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD , 2013, 1308.4405.

[30]  A. Dekel,et al.  Radiative feedback and the low efficiency of galaxy formation in low-mass haloes at high redshift , 2013, 1307.0943.

[31]  H. Rix,et al.  GEOMETRY OF STAR-FORMING GALAXIES FROM SDSS, 3D-HST, AND CANDELS , 2014, 1407.4233.

[32]  Bruce G. Elmegreen,et al.  Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit , 2005 .

[33]  Christopher E. Moody,et al.  Diverse structural evolution at z > 1 in cosmologically simulated galaxies , 2014, 1409.1583.

[34]  Princeton University.,et al.  The shapes of galaxies in the Sloan Digital Sky Survey , 2008, 0802.0877.

[35]  B. Weiner,et al.  KINEMATIC EVOLUTION OF SIMULATED STAR-FORMING GALAXIES , 2014, 1406.5187.

[36]  Carnegie,et al.  CANDELS: THE PROGENITORS OF COMPACT QUIESCENT GALAXIES AT z ∼ 2 , 2012, 1206.5000.

[37]  S. M. Fall,et al.  The Morphological Diversities among Star-forming Galaxies at High Redshifts in the Great Observatories Origins Deep Survey , 2006, astro-ph/0606696.

[38]  A. Fontana,et al.  CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD , 2013, 1305.1823.

[39]  R. Bernstein,et al.  A Structural and Dynamical Study of Late-Type, Edge-on Galaxies. II. Vertical Color Gradients and the Detection of Ubiquitous Thick Disks , 2002, astro-ph/0207221.

[40]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[41]  A. Dekel,et al.  Formation of elongated galaxies with low masses at high redshift , 2015, 1504.04988.

[42]  Guillermo Barro,et al.  The Isophotal Structure of Star-forming Galaxies at 0.5 < z < 1.8 in CANDELS: Implications for the Evolution of Galaxy Structure , 2018, 1802.07930.

[43]  S. Faber,et al.  Evolution of galaxy shapes from prolate to oblate through compaction events , 2015, 1512.06268.