Experimental Mathematics: Recent Developments and Future Outlook
暂无分享,去创建一个
[1] Jonathan M. Borwein,et al. Empirically Determined Apéry-like Formulae for Zeta(4n+3) , 1997 .
[2] P. Borwein,et al. Polynomials With {0, +1, -1} Coefficients and a Root Close to a Given Point , 1997, Canadian Journal of Mathematics.
[3] D. J. Broadhurst,et al. Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops , 1996, hep-th/9609128.
[4] F. Gill,et al. Advice to a Young Scientist , 1982 .
[5] D. Zagier. Values of Zeta Functions and Their Applications , 1994 .
[6] Neil J. A. Sloane,et al. The encyclopedia of integer sequences , 1995 .
[7] David H. Bailey,et al. On the Random Character of Fundamental Constant Expansions , 2001, Exp. Math..
[8] Jonathan M. Borwein,et al. Experimental Evaluation of Euler Sums , 1994, Exp. Math..
[9] Jonathan M. Borwein,et al. Empirically Determined Apéry-Like Formulae for ζ(4n+3) , 1997, Exp. Math..
[10] J. Borwein,et al. Emerging Tools for Experimental Mathematics , 1999 .
[11] Jonathan M. Borwein,et al. Central Binomial Sums, Multiple Clausen Values, and Zeta Values , 2001, Exp. Math..
[12] Jonathan M. Borwein,et al. Some Remarkable Properties of Sinc and Related Integrals , 2001 .
[13] David H. Bailey,et al. A Fortran 90-based multiprecision system , 1995, TOMS.
[14] David H. Bailey,et al. A seventeenth-order polylogarithm ladder , 1999 .
[15] J. Holbrook,et al. Statistical sampling and fractal distributions , 1996 .
[16] Jonathan M. Borwein,et al. Special Values of Multidimensional Polylogarithms , 2001 .
[17] D. H. Lehmer. Factorization of Certain Cyclotomic Functions , 1933 .
[18] Imre Lakatos,et al. On the Uses of Rigorous Proof. (Book Reviews: Proofs and Refutations. The Logic of Mathematical Discovery) , 1977 .
[19] D. J. Broadhurst. Massive 3-loop Feynman diagrams reducible to SC$^*$ primitives of algebras of the sixth root of unity , 1999 .
[20] David Bailey,et al. On the rapid computation of various polylogarithmic constants , 1997, Math. Comput..
[21] David H. Bailey,et al. Parallel integer relation detection: Techniques and applications , 2001, Math. Comput..
[22] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[23] David H. Bailey,et al. Analysis of PSLQ, an integer relation finding algorithm , 1999, Math. Comput..
[24] J. Borwein,et al. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity , 1998 .
[25] D. J. Broadhurst,et al. Beyond the triangle and uniqueness relations: non-zeta counterterms at large N from positive knots , 1996 .
[26] David J. Broadhurst,et al. Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ?(3) and ?(5) , 1998 .
[27] George Polya,et al. Mathematical discovery : on understanding, learning, and teaching problem solving , 1962 .
[28] Reuben Hersh,et al. FRESH BREEZES IN THE PHILOSOPHY OF MATHEMATICS , 1995 .
[29] J. Borwein,et al. Strange series and high precision fraud , 1992 .
[30] Jonathan M. Borwein,et al. Making Sense of Experimental Mathematics , 1996 .
[31] Isaac Asimov,et al. Isaac Asimov's Book of Science and Nature Quotations , 1990 .
[32] Gert Almkvist,et al. Borwein and Bradley's Apérv-Like Formulae for ζ(4n + 3) , 1999, Exp. Math..
[33] R. Forcade,et al. Generalization of the Euclidean algorithm for real numbers to all dimensions higher than two , 1979 .
[34] Marshall Missner,et al. Who Got Einstein's Office? , 1987 .