HMT of the Ranklet Transform for Face Recognition and Verification

This paper introduces the Hidden Markov Tree (HMT) of the ranklet transform as a new face recognition and verification system. The HMT has been used in modeling the face images where the ranklet transform serve as features. The proposed system is evaluated on a large database of people obtaining highly competitive and promising results.

[1]  Robert D. Nowak,et al.  Wavelet-based statistical signal processing using hidden Markov models , 1998, IEEE Trans. Signal Process..

[2]  Fabrizio Smeraldi Ranklets: orientation selective non-parametric features applied to face detection , 2002, Object recognition supported by user interaction for service robots.

[3]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[4]  Ah Chung Tsoi,et al.  Face recognition: a convolutional neural-network approach , 1997, IEEE Trans. Neural Networks.

[5]  Justin K. Romberg,et al.  Bayesian tree-structured image modeling using wavelet-domain hidden Markov models , 2001, IEEE Trans. Image Process..

[6]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Michael David Kelly,et al.  Visual identification of people by computer , 1970 .

[8]  Justin K. Romberg,et al.  A geometric hidden Markov tree wavelet model , 2003, SPIE Optics + Photonics.

[9]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[11]  Alex Pentland,et al.  Probabilistic Visual Learning for Object Representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Penio S. Penev,et al.  Local feature analysis: A general statistical theory for object representation , 1996 .

[13]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[14]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[15]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Harry Wechsler,et al.  The FERET database and evaluation procedure for face-recognition algorithms , 1998, Image Vis. Comput..

[17]  Takeo Kanade,et al.  Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Chengjun Liu,et al.  A shape- and texture-based enhanced Fisher classifier for face recognition , 2001, IEEE Trans. Image Process..

[19]  Monson H. Hayes,et al.  Hidden Markov models for face recognition , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[20]  Ferdinando Silvestro Samaria,et al.  Face recognition using Hidden Markov Models , 1995 .

[21]  Timothy F. Cootes,et al.  Automatic face identification system using flexible appearance models , 1995, Image Vis. Comput..

[22]  Erik Hjelmås,et al.  Face Detection: A Survey , 2001, Comput. Vis. Image Underst..

[23]  Tomaso A. Poggio,et al.  Example-Based Learning for View-Based Human Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Ingemar J. Cox,et al.  Feature-based face recognition using mixture-distance , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Stan Z. Li,et al.  Face recognition using the nearest feature line method , 1999, IEEE Trans. Neural Networks.

[26]  Peter W. Hallinan Recognizing human eyes , 1991, Optics & Photonics.

[27]  Paulo Gonçalves,et al.  Computational methods for hidden Markov tree models-an application to wavelet trees , 2004, IEEE Transactions on Signal Processing.

[28]  Joachim M. Buhmann,et al.  Size and distortion invariant object recognition by hierarchical graph matching , 1990, 1990 IJCNN International Joint Conference on Neural Networks.

[29]  Norbert Krüger,et al.  Face Recognition by Elastic Bunch Graph Matching , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[31]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  K. Walker,et al.  View-based active appearance models , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[33]  Volker Blanz,et al.  Component-Based Face Recognition with 3D Morphable Models , 2003, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[34]  Rama Chellappa,et al.  Discriminant analysis of principal components for face recognition , 1998 .

[35]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Takeo Kanade,et al.  Computer recognition of human faces , 1980 .