Uncertainty quantification for generalized Langevin dynamics.

We present efficient finite difference estimators for goal-oriented sensitivity indices with applications to the generalized Langevin equation (GLE). In particular, we apply these estimators to analyze an extended variable formulation of the GLE where other well known sensitivity analysis techniques such as the likelihood ratio method are not applicable to key parameters of interest. These easily implemented estimators are formed by coupling the nominal and perturbed dynamics appearing in the finite difference through a common driving noise or common random path. After developing a general framework for variance reduction via coupling, we demonstrate the optimality of the common random path coupling in the sense that it produces a minimal variance surrogate for the difference estimator relative to sampling dynamics driven by independent paths. In order to build intuition for the common random path coupling, we evaluate the efficiency of the proposed estimators for a comprehensive set of examples of interest in particle dynamics. These reduced variance difference estimators are also a useful tool for performing global sensitivity analysis and for investigating non-local perturbations of parameters, such as increasing the number of Prony modes active in an extended variable GLE.

[1]  Muruhan Rathinam,et al.  Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. , 2010, The Journal of chemical physics.

[2]  L. Rey-Bellet,et al.  Efficient estimators for likelihood ratio sensitivity indices of complex stochastic dynamics. , 2015, The Journal of chemical physics.

[3]  Stephen D. Bond,et al.  Numerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel. , 2013, The Journal of chemical physics.

[4]  B. Jourdain,et al.  Computation of sensitivities for the invariant measure of a parameter dependent diffusion , 2015, 1509.01348.

[5]  Muruhan Rathinam,et al.  SPSens: a software package for stochastic parameter sensitivity analysis of biochemical reaction networks , 2013, Bioinform..

[6]  M. Despósito,et al.  Subdiffusive behavior in a trapping potential: mean square displacement and velocity autocorrelation function. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  E. Vanden-Eijnden,et al.  Mori-Zwanzig formalism as a practical computational tool. , 2010, Faraday discussions.

[8]  M. Katsoulakis,et al.  Pathwise Sensitivity Analysis in Transient Regimes , 2015, 1502.05430.

[9]  Giovanni Bussi,et al.  Langevin equation with colored noise for constant-temperature molecular dynamics simulations. , 2008, Physical review letters.

[10]  Alexandre J. Chorin,et al.  Problem reduction, renormalization, and memory , 2005 .

[11]  M. Katsoulakis,et al.  Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations. , 2013, The Journal of chemical physics.

[12]  Bruno Bouchard,et al.  On the Malliavin approach to Monte Carlo approximation of conditional expectations , 2004, Finance Stochastics.

[13]  G. A. Pavliotis,et al.  Asymptotic analysis for the generalized Langevin equation , 2010, 1003.4203.

[14]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[15]  David F. Anderson,et al.  An Efficient Finite Difference Method for Parameter Sensitivities of Continuous Time Markov Chains , 2011, SIAM J. Numer. Anal..

[16]  P. Glasserman,et al.  Some Guidelines and Guarantees for Common Random Numbers , 1992 .

[17]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[18]  Andrea Saltelli,et al.  An effective screening design for sensitivity analysis of large models , 2007, Environ. Model. Softw..

[19]  Yannis Pantazis,et al.  Parametric Sensitivity Analysis for Stochastic Molecular Systems using Information Theoretic Metrics , 2014, The Journal of chemical physics.

[20]  L. Kantorovich,et al.  Applications of the generalized Langevin equation: Towards a realistic description of the baths , 2014, 1412.6052.

[21]  Giovanni Bussi,et al.  Nuclear quantum effects in solids using a colored-noise thermostat. , 2009, Physical review letters.

[22]  Pierre L'Ecuyer,et al.  Convergence rates for steady-state derivative estimators , 1990, Ann. Oper. Res..

[23]  Joseph Ford,et al.  Numerical Experiments on the Stochastic Behavior of a Lennard-Jones Gas System , 1973 .

[24]  I. Goychuk Viscoelastic Subdiffusion: Generalized Langevin Equation Approach , 2012 .

[25]  Dionisios G. Vlachos,et al.  Parametric sensitivity analysis for biochemical reaction networks based on pathwise information theory , 2013, BMC Bioinformatics.

[26]  Martin Hairer,et al.  A simple framework to justify linear response theory , 2009, Nonlinearity.

[27]  Raúl Tempone,et al.  Multilevel hybrid split-step implicit tau-leap , 2015, Numerical Algorithms.

[28]  Eric Darve,et al.  Computing generalized Langevin equations and generalized Fokker–Planck equations , 2009, Proceedings of the National Academy of Sciences.

[29]  P. Glasserman,et al.  Malliavin Greeks without Malliavin calculus , 2007 .

[30]  P. Glasserman,et al.  Monte Carlo methods for security pricing , 1997 .

[31]  Michael A. Zazanis,et al.  Convergence Rates of Finite-Difference Sensitivity Estimates for Stochastic Systems , 1993, Oper. Res..

[32]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[33]  Elizabeth Skubak Wolf,et al.  Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems. , 2014, The Journal of chemical physics.

[34]  Pierre-Louis Lions,et al.  Applications of Malliavin calculus to Monte Carlo methods in finance , 1999, Finance Stochastics.

[35]  Daniel Potts,et al.  Parameter estimation for exponential sums by approximate Prony method , 2010, Signal Process..

[36]  R. Zwanzig Nonequilibrium statistical mechanics , 2001, Physics Subject Headings (PhySH).

[37]  G. Ciccotti,et al.  Direct Computation of Dynamical Response by Molecular Dynamics: The Mobility of a Charged Lennard-Jones Particle , 1975 .

[38]  Luc Rey-Bellet,et al.  Open classical systems , 2006 .

[39]  Pierre L'Ecuyer,et al.  On the Convergence Rates of IPA and FDC Derivative Estimators , 1990, Oper. Res..

[40]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[41]  L. Kantorovich,et al.  Nonequilibrium processes from generalized Langevin equations: Realistic nanoscale systems connected to two thermal baths , 2015, 1512.03705.

[42]  Giovanni Bussi,et al.  Colored-Noise Thermostats à la Carte , 2010, 1204.0822.

[43]  L. Stella,et al.  Generalized Langevin equation: An efficient approach to nonequilibrium molecular dynamics of open systems , 2013, 1312.4903.

[44]  Yannis Pantazis,et al.  Accelerated Sensitivity Analysis in High-Dimensional Stochastic Reaction Networks , 2014, PloS one.

[45]  Yannis Pantazis,et al.  A relative entropy rate method for path space sensitivity analysis of stationary complex stochastic dynamics. , 2012, The Journal of chemical physics.

[46]  Michele Parrinello,et al.  Efficient stochastic thermostatting of path integral molecular dynamics. , 2010, The Journal of chemical physics.

[47]  Scott A. McKinley,et al.  Model Comparison and Assessment for Single Particle Tracking in Biological Fluids , 2014, 1407.5962.

[48]  M. Despósito,et al.  Anomalous diffusion: exact solution of the generalized Langevin equation for harmonically bounded particle. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  J. Klafter,et al.  Nonergodicity mimics inhomogeneity in single particle tracking. , 2008, Physical review letters.

[50]  G. Beylkin,et al.  Approximation by exponential sums revisited , 2010 .

[51]  G. Beylkin,et al.  On approximation of functions by exponential sums , 2005 .

[52]  Scott A. McKinley,et al.  Statistical challenges in microrheology , 2012, 1201.5984.

[53]  X. Xie,et al.  Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. , 2004, Physical review letters.

[54]  George Em Karniadakis,et al.  Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. , 2015, The Journal of chemical physics.

[55]  P. B. Warren,et al.  Malliavin weight sampling for computing sensitivity coefficients in Brownian dynamics simulations. , 2012, Physical review letters.

[56]  Yannis Pantazis,et al.  Path-Space Information Bounds for Uncertainty Quantification and Sensitivity Analysis of Stochastic Dynamics , 2015, SIAM/ASA J. Uncertain. Quantification.

[57]  Michele Ceriotti,et al.  Efficient multiple time scale molecular dynamics: Using colored noise thermostats to stabilize resonances. , 2010, The Journal of chemical physics.

[58]  A. Saltelli,et al.  Sensitivity Anaysis as an Ingredient of Modeling , 2000 .

[59]  Michele Parrinello,et al.  Accelerating the convergence of path integral dynamics with a generalized Langevin equation. , 2011, The Journal of chemical physics.

[60]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[61]  L. Kantorovich Generalized Langevin equation for solids. I. Rigorous derivation and main properties , 2008 .

[62]  Ulrich von der Ohe,et al.  A multivariate generalization of Prony's method , 2015, 1506.00450.

[63]  David F Anderson,et al.  Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models. , 2013, The Journal of chemical physics.

[64]  L. Kantorovich,et al.  Generalized Langevin equation for solids. II. Stochastic boundary conditions for nonequilibrium molecular dynamics simulations , 2008 .

[65]  B. Leimkuhler,et al.  Molecular Dynamics: With Deterministic and Stochastic Numerical Methods , 2015 .