Perovskite Quantum Dot Photovoltaic Materials beyond the Reach of Thin Films: Full-Range Tuning of A-Site Cation Composition.

We present a cation-exchange approach for tunable A-site alloys of cesium (Cs+) and formamidinium (FA+) lead triiodide perovskite nanocrystals that enables the formation of compositions spanning the complete range of Cs1- xFA xPbI3, unlike thin-film alloys or the direct synthesis of alloyed perovskite nanocrystals. These materials show bright and finely tunable emission in the red and near-infrared range between 650 and 800 nm. The activation energy for the miscibility between Cs+ and FA+ is measured (∼0.65 eV) and is shown to be higher than reported for X-site exchange in lead halide perovskites. We use these alloyed colloidal perovskite quantum dots to fabricate photovoltaic devices. In addition to the expanded compositional range for Cs1- xFA xPbI3 materials, the quantum dot solar cells exhibit high open-circuit voltage ( VOC) with a lower loss than the thin-film perovskite devices of similar compositions.

[1]  Philip Schulz,et al.  Tailored interfaces of unencapsulated perovskite solar cells for >1,000 hour operational stability , 2018 .

[2]  M. Kanatzidis,et al.  The Renaissance of Halide Perovskites and Their Evolution as Emerging Semiconductors. , 2015, Accounts of chemical research.

[3]  David F. Watson,et al.  Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr3) perovskite nanoplatelets , 2017 .

[4]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[5]  A. Alivisatos,et al.  Cation Exchange Reactions in Ionic Nanocrystals. , 2005 .

[6]  Richard M. Maceiczyk,et al.  Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform , 2018, ACS nano.

[7]  Arthur J. Nozik,et al.  Size-Dependent Spectroscopy of InP Quantum Dots , 1997 .

[8]  Sandrine Ithurria,et al.  Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. , 2012, Journal of the American Chemical Society.

[9]  T. Pellegrino,et al.  From Binary Cu2S to ternary Cu-In-S and quaternary Cu-In-Zn-S nanocrystals with tunable composition via partial cation exchange. , 2015, ACS nano.

[10]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[11]  R. Marcus,et al.  Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3. , 2014, The journal of physical chemistry letters.

[12]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[13]  Xiaolin Zhu,et al.  Lead halide perovskites for photocatalytic organic synthesis , 2019, Nature Communications.

[14]  Q. Gong,et al.  High-Performance Formamidinium-Based Perovskite Solar Cells via Microstructure-Mediated δ-to-α Phase Transformation , 2017 .

[15]  Norris,et al.  Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. , 1996, Physical review. B, Condensed matter.

[16]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[17]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[18]  A Paul Alivisatos,et al.  Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies. , 2015, Journal of the American Chemical Society.

[19]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[20]  M. Kanatzidis,et al.  Halide Perovskites: Poor Man's High‐Performance Semiconductors , 2016, Advanced materials.

[21]  A. Alivisatos,et al.  Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. , 2009, Journal of the American Chemical Society.

[22]  Angshuman Nag,et al.  Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals , 2016 .

[23]  Yitong Dong,et al.  Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. , 2018, Nano letters.

[24]  R. Costa,et al.  Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles , 2015 .

[25]  Lih Y. Lin,et al.  Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes , 2017, Nanotechnology.

[26]  S. Rühle Tabulated values of the Shockley–Queisser limit for single junction solar cells , 2016 .

[27]  Min-Sang Lee,et al.  All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. , 2016, Chemical communications.

[28]  G. Wang,et al.  µ‐Graphene Crosslinked CsPbI3 Quantum Dots for High Efficiency Solar Cells with Much Improved Stability , 2018 .

[29]  Xizhe Liu,et al.  Spray reaction prepared FA1−xCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability , 2016 .

[30]  M. Kovalenko,et al.  Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry , 2017 .

[31]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[32]  A. Saeki,et al.  Spatial Inhomogeneity of Methylammonium Lead-Mixed Halide Perovskite Examined by Space- and Time-Resolved Microwave Conductivity , 2017, ACS omega.

[33]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[34]  Q. Akkerman,et al.  Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals , 2018, Nature Materials.

[35]  D. Trots,et al.  High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .

[36]  T. Noda,et al.  Tailoring the Open-Circuit Voltage Deficit of Wide-Band-Gap Perovskite Solar Cells Using Alkyl Chain-Substituted Fullerene Derivatives. , 2018, ACS applied materials & interfaces.

[37]  Anthony K. Cheetham,et al.  Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog , 2014 .

[38]  P. Jain,et al.  Cation Exchange on the Nanoscale: An Emerging Technique for New Material Synthesis, Device Fabrication, and Chemical Sensing , 2013 .

[39]  Lin-wang Wang,et al.  Lasing in robust cesium lead halide perovskite nanowires , 2016, Proceedings of the National Academy of Sciences.

[40]  Prashant V Kamat,et al.  Intriguing Optoelectronic Properties of Metal Halide Perovskites. , 2016, Chemical reviews.

[41]  Thomas Bein,et al.  A Long-Term View on Perovskite Optoelectronics. , 2016, Accounts of chemical research.

[42]  V. M. Goldschmidt,et al.  Die Gesetze der Krystallochemie , 1926, Naturwissenschaften.

[43]  Darrick J. Williams,et al.  Utilizing the lability of lead selenide to produce heterostructured nanocrystals with bright, stable infrared emission. , 2008, Journal of the American Chemical Society.

[44]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[45]  Ashley R. Marshall,et al.  Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[46]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[47]  M. Kanatzidis,et al.  Reentrant Structural and Optical Properties and Large Positive Thermal Expansion in Perovskite Formamidinium Lead Iodide. , 2016, Angewandte Chemie.

[48]  Jun Liu,et al.  High efficiency perovskite quantum dot solar cells with charge separating heterostructure , 2019, Nature Communications.

[49]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[50]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[51]  Antonietta Guagliardi,et al.  Dismantling the “Red Wall” of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals , 2017, ACS nano.

[52]  Paul Meredith,et al.  Organohalide Perovskites for Solar Energy Conversion. , 2016, Accounts of chemical research.

[53]  M. Islam,et al.  Phase Behavior and Polymorphism of Formamidinium Lead Iodide , 2018 .

[54]  Jinsong Huang,et al.  Matching Charge Extraction Contact for Wide‐Bandgap Perovskite Solar Cells , 2017, Advanced materials.

[55]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[56]  D. Mitzi,et al.  Inorganic Perovskites : Structural Versatility for Functional Materials Design , 2016 .

[57]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[58]  A. Paul Alivisatos,et al.  Ion exchange synthesis of III-V nanocrystals. , 2012, Journal of the American Chemical Society.

[59]  Barry P Rand,et al.  Valence and Conduction Band Densities of States of Metal Halide Perovskites: A Combined Experimental–Theoretical Study , 2016, The journal of physical chemistry letters.

[60]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[61]  Marco Zanella,et al.  Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. , 2011, Nano letters.

[62]  Andrew J. deMello,et al.  Microfluidic Reactors Provide Preparative and Mechanistic Insights into the Synthesis of Formamidinium Lead Halide Perovskite Nanocrystals , 2017 .

[63]  P. Umari,et al.  Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. , 2014, Nano letters.

[64]  Qiang Zhao,et al.  Light Absorption Coefficient of CsPbBr3 Perovskite Nanocrystals. , 2018, The journal of physical chemistry letters.

[65]  G. Cao,et al.  Room-Temperature Construction of Mixed-Halide Perovskite Quantum Dots with High Photoluminescence Quantum Yield , 2018 .

[66]  A. Walsh,et al.  Cubic Perovskite Structure of Black Formamidinium Lead Iodide, α-[HC(NH2)2]PbI3, at 298 K , 2015, The Journal of Physical Chemistry Letters.

[67]  Song Jin,et al.  Visualization and Studies of Ion-Diffusion Kinetics in Cesium Lead Bromide Perovskite Nanowires. , 2018, Nano letters.

[68]  Abhishek Swarnkar,et al.  Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence beyond Traditional Quantum Dots. , 2015, Angewandte Chemie.

[69]  Liberato Manna,et al.  Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions , 2015, Journal of the American Chemical Society.

[70]  A. Cavalli,et al.  Cu3-xP Nanocrystals as a Material Platform for Near-Infrared Plasmonics and Cation Exchange Reactions , 2015, Chemistry of materials : a publication of the American Chemical Society.

[71]  M. Grätzel,et al.  Phase Segregation in Potassium-Doped Lead Halide Perovskites from 39K Solid-State NMR at 21.1 T. , 2018, Journal of the American Chemical Society.

[72]  M. Kovalenko,et al.  Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I) , 2015, Nano letters.

[73]  P. Jain,et al.  Single-nanocrystal reaction trajectories reveal sharp cooperative transitions. , 2014, Nano letters.

[74]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[75]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[76]  A. Paul Alivisatos,et al.  Ion Exchange Synthesis of III—V Nanocrystals. , 2013 .

[77]  Matthew C. Beard,et al.  Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells , 2017, Science Advances.

[78]  Andreas Kornowski,et al.  A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals. , 2010 .

[79]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[80]  L. Wheeler,et al.  Dynamic Evolution of 2D Layers within Perovskite Nanocrystals via Salt Pair Extraction and Reinsertion , 2018 .

[81]  Yin Song,et al.  Structure‐Tuned Lead Halide Perovskite Nanocrystals , 2016, Advanced materials.

[82]  R. Palgrave,et al.  On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system , 2016, Chemical science.

[83]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[84]  A. Rogach,et al.  A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals , 2001 .

[85]  S. Shaheen,et al.  Thermal engineering of FAPbI3 perovskite material via radiative thermal annealing and in situ XRD , 2017, Nature Communications.

[86]  Noah D Bronstein,et al.  Surface- vs Diffusion-Limited Mechanisms of Anion Exchange in CsPbBr3 Nanocrystal Cubes Revealed through Kinetic Studies. , 2016, Journal of the American Chemical Society.

[87]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[88]  L. Quan,et al.  Highly Efficient Visible Colloidal Lead-Halide Perovskite Nanocrystal Light-Emitting Diodes. , 2018, Nano letters.

[89]  Oleksandr Voznyy,et al.  Highly Efficient Perovskite‐Quantum‐Dot Light‐Emitting Diodes by Surface Engineering , 2016, Advanced materials.

[90]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[91]  Lih Y. Lin,et al.  Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes. , 2017, Nanotechnology.