Fabrication and thermoelectric properties of Ca-Co-O ceramics with negative Seebeck coefficient

[1]  Kejian Li,et al.  Excellent thermoelectricity performance of p-type SnSe along b axis , 2018 .

[2]  P. Sharma,et al.  Semiconducting Ge-Se-Sb-Ag chalcogenides as prospective materials for thermoelectric applications , 2017 .

[3]  E. Lara‐Curzio,et al.  Competing dopants grain boundary segregation and resultant seebeck coefficient and power factor enhancement of thermoelectric calcium cobaltite ceramics , 2017 .

[4]  Yanan Huang,et al.  Tuning of conductive type and magnetic properties of Ca3Co2O6 ceramics through Pb‐doping , 2017 .

[5]  F. Gao,et al.  Effect of reducing annealing on the microstructure and thermoelectric properties of La–Bi co-doped SrTiO3 ceramics , 2017, Journal of Materials Science: Materials in Electronics.

[6]  F. Gao,et al.  Fabrication and high-temperature thermoelectric properties of Ti-doped Sr0.9La0.1TiO3 ceramics , 2016 .

[7]  Youjia Zhang,et al.  Electrical properties of Dy3+/Na+ Co-doped oxide thermoelectric [Ca1-x(Na1/2Dy1/2)x]MnO3 ceramics , 2016 .

[8]  F. Gao,et al.  Microstructure and enhanced seebeck coefficient of textured Sr3Ti2O7 ceramics prepared by RTGG method , 2016 .

[9]  G. Tang,et al.  Optimization of the spin entropy by incorporating magnetic ion in a misfit-layered calcium cobaltite , 2016 .

[10]  Ruoping Li,et al.  Convergence of valence bands for high thermoelectric performance for p-type InN , 2015 .

[11]  M. A. Madre,et al.  Enhancement of mechanical and thermoelectric properties of Ca3Co4O9 by Ag addition , 2015 .

[12]  M. Sunkara,et al.  Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering. , 2014, ACS applied materials & interfaces.

[13]  Yu-Jun Zhao,et al.  Tuning p/n conductivity in wurtzite transition metal monoxide: Role of native defects in CoO and MnO , 2014 .

[14]  Xiaoyan Song,et al.  Preparation and thermoelectric transport properties of Ba-, La- and Ag-doped Ca3Co4O9 oxide materials , 2013 .

[15]  K. Cai,et al.  The effect of Te doping on the electronic structure and thermoelectric properties of SnSe , 2012 .

[16]  Jeffrey W. Fergus,et al.  Oxide materials for high temperature thermoelectric energy conversion , 2012 .

[17]  Z. R. Yang,et al.  Thermoelectric properties of sol-gel derived cobaltite Bi2Ca2.4Co2Oy , 2011 .

[18]  Y. Gan,et al.  Thermoelectricity of nanocomposites containing TiO2–CoO coaxial nanocables , 2011 .

[19]  N. Nong,et al.  High-temperature thermoelectric properties of late rare earth-doped Ca3Co4O9+δ , 2011 .

[20]  W. Su,et al.  Doping-Induced Metal−Insulator Transition and the Thermal Transport Properties in Ca3−xYxCo4O9 , 2010 .

[21]  M. Chance,et al.  Structural studies on Na0.75CoO2 thermoelectric material at high pressures , 2009 .

[22]  Kunihito Koumoto,et al.  Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-type SrTiO3(-). , 2008, Inorganic chemistry.

[23]  S. Faleev,et al.  Theory of enhancement of thermoelectric properties of materials with nanoinclusions , 2008, 0807.0260.

[24]  N. Nong,et al.  Power factors of late rare earth-doped Ca3Co2O6 oxides , 2006 .

[25]  H. Yang,et al.  Structural phase transitions and sodium ordering in Na0.5CoO2: a combined electron diffraction and Raman spectroscopy study , 2004, cond-mat/0412578.

[26]  I. Terasaki Transport properties and electronic states of the thermoelectric oxide NaCo2O4 , 2002, cond-mat/0207315.

[27]  Osamu Yamashita,et al.  Bismuth telluride compounds with high thermoelectric figures of merit , 2003 .