Augmented endothelial exocytosis of angiopoietin-2 resulting from CCM3-deficiency contributes to the progression of cerebral cavernous malformation

[1]  Dean Y. Li,et al.  Corrigendum: Cerebral cavernous malformations arise from endothelial gain of MEKK3–KLF2/4 signalling , 2016, Nature.

[2]  Zinan Zhou,et al.  Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signaling , 2016, Nature.

[3]  M. Corada,et al.  KLF4 is a key determinant in the development and progression of cerebral cavernous malformations , 2015, EMBO molecular medicine.

[4]  E. Dejana,et al.  Defective autophagy is a key feature of cerebral cavernous malformations , 2015, EMBO molecular medicine.

[5]  Pamela F. Jones,et al.  A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis , 2015, Nature Communications.

[6]  I. Awad,et al.  Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. (I2-2B) , 2015, Neurology.

[7]  A. Flenniken,et al.  A lymphatic defect causes ocular hypertension and glaucoma in mice. , 2014, The Journal of clinical investigation.

[8]  M. Leptin,et al.  Molecular mechanisms of de novo lumen formation , 2014, Nature Reviews Molecular Cell Biology.

[9]  W. Min,et al.  AIP1 Mediates Vascular Endothelial Cell Growth Factor Receptor-3–Dependent Angiogenic and Lymphangiogenic Responses , 2014, Arteriosclerosis, thrombosis, and vascular biology.

[10]  J. Pober,et al.  Pericytes modulate endothelial sprouting. , 2013, Cardiovascular research.

[11]  Yingke Xu,et al.  A network of interactions enables CCM3 and STK24 to coordinate UNC13D-driven vesicle exocytosis in neutrophils. , 2013, Developmental cell.

[12]  A. Ghabrial,et al.  Focal defects in single-celled tubes mutant for Cerebral cavernous malformation 3, GCKIII, or NSF2. , 2013, Developmental cell.

[13]  L. Ferrarini,et al.  EndMT contributes to the onset and progression of cerebral cavernous malformations , 2013, Nature.

[14]  M. Gunel,et al.  Ultrastructural analysis of vascular features in cerebral cavernous malformations , 2013, Clinical Neurology and Neurosurgery.

[15]  J. Pober,et al.  Claudin-5 Controls Intercellular Barriers of Human Dermal Microvascular but Not Human Umbilical Vein Endothelial Cells , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[16]  M. Ginsberg,et al.  Structural basis of the junctional anchorage of the cerebral cavernous malformations complex , 2012, The Journal of cell biology.

[17]  T. Pellinen,et al.  Negative regulators of integrin activity , 2012, Journal of Cell Science.

[18]  M. Felcht,et al.  Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling. , 2012, The Journal of clinical investigation.

[19]  K. Alitalo,et al.  Effects of Angiopoietin-2-Blocking Antibody on Endothelial Cell–Cell Junctions and Lung Metastasis , 2012, Journal of the National Cancer Institute.

[20]  Xiaoling Liang,et al.  Retro-orbital injection of FITC-dextran is an effective and economical method for observing mouse retinal vessels , 2011, Molecular vision.

[21]  Y. Mukouyama,et al.  Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations. , 2011, Human molecular genetics.

[22]  N. Chi,et al.  Ccm3 functions in a manner distinct from Ccm1 and Ccm2 in a zebrafish model of CCM vascular disease. , 2011, Developmental biology.

[23]  Amber N. Stratman,et al.  Mutations in 2 distinct genetic pathways result in cerebral cavernous malformations in mice. , 2011, The Journal of clinical investigation.

[24]  R. Kucherlapati,et al.  A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. , 2011, Human molecular genetics.

[25]  A. Bartol,et al.  Integrin Cytoplasmic Domain–Associated Protein-1 Attenuates Sprouting Angiogenesis , 2010, Circulation research.

[26]  W. Sessa,et al.  CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. , 2010, The Journal of clinical investigation.

[27]  T. Force,et al.  CCM3/PDCD10 stabilizes GCKIII proteins to promote Golgi assembly and cell orientation , 2010, Journal of Cell Science.

[28]  W. Min,et al.  Stabilization of VEGFR2 Signaling by Cerebral Cavernous Malformation 3 Is Critical for Vascular Development , 2010, Science Signaling.

[29]  R. Shenkar,et al.  Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity , 2010, The Journal of experimental medicine.

[30]  F. Orsenigo,et al.  CCM1 regulates vascular-lumen organization by inducing endothelial polarity , 2010, Journal of Cell Science.

[31]  E. Tournier-Lasserve,et al.  Recent insights into cerebral cavernous malformations: the molecular genetics of CCM , 2010, The FEBS journal.

[32]  M. van Meurs,et al.  Time course of angiopoietin-2 release during experimental human endotoxemia and sepsis , 2009, Critical care.

[33]  C. Betsholtz,et al.  Endothelial-mural cell signaling in vascular development and angiogenesis. , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[34]  N. Petit,et al.  Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations , 2009, Disease Models & Mechanisms.

[35]  G. Steinberg,et al.  Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. , 2009, Human molecular genetics.

[36]  T. Kodama,et al.  Angiopoietin-1 Induces Krüppel-like Factor 2 Expression through a Phosphoinositide 3-Kinase/AKT-dependent Activation of Myocyte Enhancer Factor 2*♦ , 2009, Journal of Biological Chemistry.

[37]  Christopher A. Jones,et al.  The Cerebral Cavernous Malformation signaling pathway promotes vascular integrity via Rho GTPases , 2009, Nature Medicine.

[38]  U. Felbor,et al.  A two-hit mechanism causes cerebral cavernous malformations: complete inactivation of CCM1, CCM2 or CCM3 in affected endothelial cells , 2008, Human molecular genetics.

[39]  T. Kodama,et al.  Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by angiopoietin-1 , 2008, Nature Cell Biology.

[40]  Lauri Eklund,et al.  Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell–cell and cell–matrix contacts , 2008, Nature Cell Biology.

[41]  E. Tournier-Lasserve,et al.  Genetics of cavernous angiomas , 2007, The Lancet Neurology.

[42]  E. Vicaut,et al.  Genotype–phenotype correlations in cerebral cavernous malformations patients , 2006, Annals of neurology.

[43]  G. Yancopoulos,et al.  Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells , 2006, Proceedings of the National Academy of Sciences.

[44]  M. Vikkula,et al.  Cerebral cavernous malformation: new molecular and clinical insights , 2006, Journal of Medical Genetics.

[45]  B. Olsen,et al.  Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. , 2006, Experimental cell research.

[46]  H. Augustin,et al.  Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation , 2006, Nature Medicine.

[47]  M. Yamakuchi,et al.  Regulation of Weibel-Palade body exocytosis. , 2005, Trends in cardiovascular medicine.

[48]  D. Marchuk,et al.  CCM1 and CCM2 protein interactions in cell signaling: implications for cerebral cavernous malformations pathogenesis. , 2005, Human molecular genetics.

[49]  J. Gault,et al.  Biallelic Somatic and Germ Line CCM1 Truncating Mutations in a Cerebral Cavernous Malformation Lesion , 2005, Stroke.

[50]  C. Liquori,et al.  Mutations in a gene encoding a novel protein containing a phosphotyrosine-binding domain cause type 2 cerebral cavernous malformations. , 2003, American journal of human genetics.

[51]  A. Fischer,et al.  Munc13-4 Is Essential for Cytolytic Granules Fusion and Is Mutated in a Form of Familial Hemophagocytic Lymphohistiocytosis (FHL3) , 2003, Cell.

[52]  P. Campochiaro,et al.  Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. , 2002, Developmental cell.

[53]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[54]  J. W. Thomas,et al.  Mutations in the gene encoding KRIT1, a Krev-1/rap1a binding protein, cause cerebral cavernous malformations (CCM1). , 1999, Human molecular genetics.

[55]  P. Carmeliet,et al.  Targeted Deficiency or Cytosolic Truncation of the VE-cadherin Gene in Mice Impairs VEGF-Mediated Endothelial Survival and Angiogenesis , 1999, Cell.

[56]  S. Gory-Fauré,et al.  Role of vascular endothelial-cadherin in vascular morphogenesis. , 1999, Development.

[57]  Thomas N. Sato,et al.  Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. , 1997, Science.

[58]  M. Preul,et al.  Cerebral cavernous malformations: from genes to proteins to disease. , 2012, Journal of neurosurgery.

[59]  M. N. Nakatsu,et al.  An optimized three-dimensional in vitro model for the analysis of angiogenesis. , 2008, Methods in enzymology.

[60]  M. Clanet,et al.  Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. , 2005, American journal of human genetics.

[61]  T. Südhof,et al.  Membrane fusion and exocytosis. , 1999, Annual review of biochemistry.