Robust Distributional Regression with Automatic Variable Selection

Datasets with extreme observations and/or heavy-tailed error distributions are commonly encountered and should be analyzed with careful consideration of these features from a statistical perspective. Small deviations from an assumed model, such as the presence of outliers, can cause classical regression procedures to break down, potentially leading to unreliable inferences. Other distributional features, such as heteroscedasticity, can be handled by going beyond the mean and modelling the scale parameter in terms of covariates. We propose a method that accounts for heavy tails and heteroscedasticity through the use of a generalized normal distribution (GND). The GND contains a kurtosis-characterizing shape parameter that moves the model smoothly between the normal distribution and the heavier-tailed Laplace distribution — thus covering both classical and robust regression. A key component of statistical modelling is determining the set of covariates that influence the response variable. While correctly accounting for kurtosis and heteroscedasticity is crucial to this endeavour, a procedure for variable selection is still required. For this purpose, we use a novel penalized estimation procedure that avoids the typical computationally demanding grid search for tuning parameters. This is particularly valuable in the distributional regression setting where the location and scale parameters depend on covariates, since the standard approach would have multiple tuning parameters (one for each distributional parameter). We achieve this by using a “smooth information criterion” that can be optimized directly, where the tuning parameters are fixed at log( n ) in the BIC case.

[1]  K. Burke,et al.  Variable selection using a smooth information criterion for distributional regression models , 2021, Statistics and Computing.

[2]  T. Kneib,et al.  Rage Against the Mean – A Review of Distributional Regression Approaches , 2021, Econometrics and Statistics.

[3]  Thomas Kneib,et al.  Interactively visualizing distributional regression models with distreg.vis , 2021, Statistical Modelling.

[4]  Leonid Hanin,et al.  Cavalier Use of Inferential Statistics Is a Major Source of False and Irreproducible Scientific Findings , 2021, Mathematics.

[5]  Klaus Nordhausen,et al.  Robust linear regression for high‐dimensional data: An overview , 2020, WIREs Computational Statistics.

[6]  Xiaoming Yuan,et al.  The flare package for high dimensional linear regression and precision matrix estimation in R , 2020, J. Mach. Learn. Res..

[7]  Elvezio Ronchetti,et al.  Accurate and robust inference , 2020 .

[8]  Yunlu Jiang,et al.  Outlier detection and robust variable selection via the penalized weighted LAD-LASSO method , 2020, Journal of applied statistics.

[9]  Umberto Amato,et al.  Penalised robust estimators for sparse and high-dimensional linear models , 2020, Statistical Methods & Applications.

[10]  julien Hambuckers,et al.  LASSO-type penalization in the framework of generalized additive models for location, scale and shape , 2019, Comput. Stat. Data Anal..

[11]  M. C. Jones,et al.  A flexible parametric modelling framework for survival analysis , 2019, Journal of the Royal Statistical Society: Series C (Applied Statistics).

[12]  Furno Marilena,et al.  Quantile Regression , 2018, Wiley Series in Probability and Statistics.

[13]  Achim Zeileis,et al.  BAMLSS: Bayesian Additive Models for Location, Scale, and Shape (and Beyond) , 2018, Journal of Computational and Graphical Statistics.

[14]  Mikis D. Stasinopoulos,et al.  GAMLSS: A distributional regression approach , 2018 .

[15]  Thomas Kneib,et al.  Understanding the Economic Determinants of the Severity of Operational Losses: A Regularized Generalized Pareto Regression Approach , 2018, Journal of Applied Econometrics.

[16]  G. Heller,et al.  Flexible Regression and Smoothing: Using Gamlss in R , 2017 .

[17]  Jianqing Fan,et al.  Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions , 2017, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[18]  E. Ronchetti,et al.  Robust statistics: a selective overview and new directions , 2015 .

[19]  Victor J. Yohai,et al.  Robust and sparse estimators for linear regression models , 2015, Comput. Stat. Data Anal..

[20]  Lixin Song,et al.  SCAD‐penalized quantile regression for high‐dimensional data analysis and variable selection , 2015 .

[21]  Jianqing Fan,et al.  Robust Estimation of High-Dimensional Mean Regression , 2014, 1410.2150.

[22]  Benjamin Hofner,et al.  gamboostLSS: An R Package for Model Building and Variable Selection in the GAMLSS Framework , 2014, 1407.1774.

[23]  R. Tibshirani,et al.  A Study of Error Variance Estimation in Lasso Regression , 2013, 1311.5274.

[24]  T. Kneib Beyond mean regression , 2013 .

[25]  Max Kuhn,et al.  Applied Predictive Modeling , 2013 .

[26]  Jianqing Fan,et al.  ADAPTIVE ROBUST VARIABLE SELECTION. , 2012, Annals of statistics.

[27]  Benjamin Hofner,et al.  Generalized additive models for location, scale and shape for high dimensional data—a flexible approach based on boosting , 2012 .

[28]  M. C. Jones,et al.  On parameter orthogonality in symmetric and skew models , 2011 .

[29]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[30]  Peter Filzmoser,et al.  An Object-Oriented Framework for Robust Multivariate Analysis , 2009 .

[31]  A. Belloni,et al.  L1-Penalized Quantile Regression in High Dimensional Sparse Models , 2009, 0904.2931.

[32]  Yufeng Liu,et al.  VARIABLE SELECTION IN QUANTILE REGRESSION , 2009 .

[33]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[34]  Hansheng Wang,et al.  Robust Regression Shrinkage and Consistent Variable Selection Through the LAD-Lasso , 2007 .

[35]  S. Nadarajah A generalized normal distribution , 2005 .

[36]  R. Rigby,et al.  Generalized additive models for location, scale and shape , 2005 .

[37]  T. E. Dielman,et al.  Least absolute value regression: recent contributions , 2005 .

[38]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[39]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[40]  R. Zamar,et al.  Bootstrapping robust estimates of regression , 2002 .

[41]  Jianqing Fan,et al.  Variable Selection for Cox's proportional Hazards Model and Frailty Model , 2002 .

[42]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[43]  Kesar Singh,et al.  Breakdown theory for bootstrap quantiles , 1998 .

[44]  R. Tibshirani The lasso method for variable selection in the Cox model. , 1997, Statistics in medicine.

[45]  D. G. Simpson,et al.  On One-Step GM Estimates and Stability of Inferences in Linear Regression , 1992 .

[46]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[47]  D. Cox,et al.  Parameter Orthogonality and Approximate Conditional Inference , 1987 .

[48]  R. Koenker,et al.  Asymptotic Theory of Least Absolute Error Regression , 1978 .

[49]  D. Rubinfeld,et al.  Hedonic housing prices and the demand for clean air , 1978 .

[50]  A. Harvey Estimating Regression Models with Multiplicative Heteroscedasticity , 1976 .

[51]  T. Ohira,et al.  Stability , 1973, Mathematics as a Laboratory Tool.

[52]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[53]  Herbert C. Rutemiller,et al.  Estimation in a Heteroscedastic Regression Model , 1968 .

[54]  Thiago G. Ramires,et al.  Validation of Stepwise-Based Procedure in GAMLSS , 2021, Journal of Data Science.

[55]  Kevin Burke,et al.  Variable Selection Using a Smooth Information Criterion for Multi-Parameter Regression Models , 2021 .

[56]  Chenlei Leng,et al.  VARIABLE SELECTION AND COEFFICIENT ESTIMATION VIA REGULARIZED RANK REGRESSION , 2010 .

[57]  R. Koenker,et al.  Regression Quantiles , 2007 .

[58]  Christophe Croux,et al.  Robust standard errors for robust estimators , 2003 .

[59]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[60]  P. Rousseeuw,et al.  Alternatives to the Median Absolute Deviation , 1993 .