The Atacama Cosmology Telescope: measuring radio galaxy bias through cross-correlation with lensing

We correlate the positions of radio galaxies in the FIRST survey with the CMB lensing convergence estimated from the Atacama Cosmology Telescope over 470 deg 2 to determine the bias of these galaxies. We remove optically cross-matched sources below redshift z = 0:2 to preferentially select Active Galactic Nuclei (AGN). We measure the angular cross-power spectrum C g l at 4:4 signicance

[1]  Merger-Driven Star Formation History of the Universe , 2006 .

[2]  Ofer Lahav,et al.  Variance and skewness in the FIRST survey , 1998 .

[3]  On the redshift cut-off for flat-spectrum radio sources , 2000, astro-ph/0006081.

[4]  On the redshift cut-off for steep-spectrum radio sources , 2001, astro-ph/0106473.

[5]  M. I. Large,et al.  SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky. I. Science Goals, Survey Design, and Instrumentation , 1999 .

[6]  S. Dye,et al.  CROSS-CORRELATION BETWEEN THE CMB LENSING POTENTIAL MEASURED BY PLANCK AND HIGH-z SUBMILLIMETER GALAXIES DETECTED BY THE HERSCHEL-ATLAS SURVEY , 2014, 1410.4502.

[7]  L. Miller,et al.  A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes , 2008, 0805.3413.

[8]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[9]  Oliver Zahn,et al.  Detection of gravitational lensing in the cosmic microwave background , 2007, 0705.3980.

[10]  M. Jarvis,et al.  Why z > 1 radio-loud galaxies are commonly located in protoclusters , 2014, 1409.1218.

[11]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[12]  M. Regis,et al.  EVIDENCE OF CROSS-CORRELATION BETWEEN THE CMB LENSING AND THE γ-RAY SKY , 2014, 1410.4997.

[13]  K. Blundell,et al.  Cosmological growth and feedback from supermassive black holes , 2013, 1305.0286.

[14]  Takahiro Nishimichi,et al.  REVISING THE HALOFIT MODEL FOR THE NONLINEAR MATTER POWER SPECTRUM , 2012, 1208.2701.

[15]  W. Cotton,et al.  Radio Sources and Star Formation in the Local Universe , 2002 .

[16]  S. Rawlings,et al.  A sample of 6C radio sources designed to find objects at redshift z>4– III. Imaging and the radio galaxy K–z relation , 2001, astro-ph/0106130.

[17]  M Hazumi,et al.  Measurement of the cosmic microwave background polarization lensing power spectrum with the POLARBEAR experiment. , 2013, Physical review letters.

[18]  M. Jarvis,et al.  Black-hole masses, accretion rates and hot- and cold-mode accretion in radio galaxies at z 1 , 2014, 1411.7388.

[19]  J. Peacock,et al.  Stable clustering, the halo model and non-linear cosmological power spectra , 2002, astro-ph/0207664.

[20]  S. Ho,et al.  Correlation of CMB with large-scale structure. II. Weak lensing , 2008, 0801.0644.

[21]  R. Somerville,et al.  THE RELATION BETWEEN QUASAR AND MERGING GALAXY LUMINOSITY FUNCTIONS AND THE MERGER-INDUCED STAR FORMATION RATE OF THE UNIVERSE , 2006 .

[22]  O. Zahn,et al.  Measuring Gravitational Lensing of the Cosmic Microwave Background using cross-correlation with large scale structure , 2012, 1207.3326.

[23]  Sam N. Lindsay,et al.  Evolution in the bias of faint radio sources to z 2.2 , 2014, 1403.0882.

[24]  M. Jarvis,et al.  An infrared–radio simulation of the extragalactic sky: from the Square Kilometre Array to Herschel , 2010, 1002.1112.

[25]  Ray P. Norris,et al.  Impact of redshift information on cosmological applications with next-generation radio surveys , 2012, 1205.1048.

[26]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[27]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Cross-Correlation of Cosmic Microwave Background Lensing and Quasars , 2012, 1207.4543.

[28]  Uros Seljak Michael S. Warren Large‐scale bias and stochasticity of haloes and dark matter , 2004, astro-ph/0403698.

[29]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[30]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[31]  L. Knox,et al.  Determination of inflationary observables by cosmic microwave background anisotropy experiments. , 1995, Physical review. D, Particles and fields.

[32]  C. Blake,et al.  Angular clustering in the Sydney University Molonglo Sky Survey , 2004 .

[33]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[34]  M. Lueker,et al.  A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE , 2012, 1203.4808.

[35]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[36]  A. Connolly,et al.  QUASAR CLUSTERING FROM SDSS DR5: DEPENDENCES ON PHYSICAL PROPERTIES , 2008, 0810.4144.

[37]  David N. Spergel,et al.  First measurement of the cross-correlation of CMB lensing and galaxy lensing , 2013, 1311.6200.

[38]  R. Becker,et al.  The Angular Two-Point Correlation Function for the FIRST Radio Survey , 1995, astro-ph/9606176.

[39]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[40]  Elaine M. Sadler,et al.  Radio sources in the 6dFGS: local luminosity functions at 1.4 GHz for star-forming galaxies and radio-loud AGN , 2007 .

[41]  M. Sullivan,et al.  The VISTA deep extragalactic observations (VIDEO) survey , 2012, 1206.4263.

[42]  Robert H. Becker,et al.  THE LAST OF FIRST: THE FINAL CATALOG AND SOURCE IDENTIFICATIONS , 2015, 1501.01555.

[43]  Chris Blake,et al.  Measurement of the angular correlation function of radio galaxies from the NRAO VLA Sky Survey , 2002 .

[44]  H. Rottgering,et al.  The luminosity-dependent high-redshift turnover in the steep spectrum radio luminosity function: clear evidence for downsizing in the radio-AGN population , 2011, 1104.5020.

[45]  H. J. A. Rottgering,et al.  The spatial clustering of radio sources in NVSS and FIRST; implications for galaxy clustering evolution , 2003 .

[46]  T. Budavari,et al.  Radio Continuum Surveys with Square Kilometre Array Pathfinders , 2012, Publications of the Astronomical Society of Australia.

[47]  Wayne Hu,et al.  Mass Reconstruction with Cosmic Microwave Background Polarization , 2002 .

[48]  C. Carilli,et al.  Science with the Square Kilometer Array , 2004, astro-ph/0409274.

[49]  Oliver Zahn,et al.  Cosmology from cross correlation of CMB lensing and galaxy surveys , 2013, 1311.0905.

[50]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[51]  Federico Nati,et al.  Evidence of lensing of the cosmic microwave background by dark matter halos. , 2014, Physical review letters.

[52]  J. Silk,et al.  AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies , 2013, 1301.3092.

[53]  A. Hopkins,et al.  Galaxy and Mass Assembly: the evolution of bias in the radio source population to z ∼ 1.5 , 2014, 1402.5654.

[54]  Edward J. Wollack,et al.  Detection of the power spectrum of cosmic microwave background lensing by the Atacama Cosmology Telescope. , 2011, Physical review letters.

[55]  S. White,et al.  An analytic model for the spatial clustering of dark matter haloes , 1995, astro-ph/9512127.

[56]  A. Myers,et al.  The clustering of intermediate-redshift quasars as measured by the Baryon Oscillation Spectroscopic Survey , 2012, 1203.5306.

[57]  Robert C. Nichol,et al.  Cosmological Measurements with Forthcoming Radio Continuum Surveys , 2011, 1108.0930.

[58]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[59]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[60]  M. Jarvis,et al.  Evidence that powerful radio jets have a profound influence on the evolution of galaxies , 2004, astro-ph/0409687.

[61]  M. Lueker,et al.  A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT z ≈ 1 USING COSMIC MICROWAVE BACKGROUND LENSING , 2013, 1307.1706.

[62]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[63]  The accretion history of the universe with the SKA , 2004, astro-ph/0409097.

[64]  Sarah Bridle,et al.  Cosmology with the SKA , 2004, astro-ph/0409278.

[65]  C. Breuck,et al.  The radio galaxy K-z relation: The $\mathsf{10^{12}}~$M$\mathsf{_\odot}$ mass limit - Masses of galaxies from the L$\mathsf{_{K}}$ luminosity, up to z $\mathsf{> 4}$ , 2003, astro-ph/0311490.

[66]  R. Faix,et al.  Red Book: 2006 Report of the Committee on Infectious Diseases, 27th Edition Edited by Larry K. Pickering, Carol F. Baker, Sarah S. Long, and Julia A. McMillan Elk Grove Village, IL: American Academy of Pediatrics, 2006. 992 pp. $124.95 (cloth) , 2007 .

[67]  M. Jarvis,et al.  Radio galaxy populations and the multitracer technique: pushing the limits on primordial non-Gaussianity , 2014, 1402.2290.

[68]  K. I. Kellermann,et al.  The Parkes quarter-Jansky flat-spectrum sample - III. Space density and evolution of QSOs , 2004, astro-ph/0408122.

[69]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[70]  M. Jarvis,et al.  GALAXY CLUSTERS AROUND RADIO-LOUD ACTIVE GALACTIC NUCLEI AT 1.3 < z < 3.2 AS SEEN BY SPITZER , 2013, 1304.0770.

[71]  G. W. Pratt,et al.  Planck 2013 results. XVIII. The gravitational lensing-infrared background correlation , 2013, 1303.5078.