Data assimilation with the weighted ensemble Kalman filter
暂无分享,去创建一个
[1] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[2] A. Lorenc. A Global Three-Dimensional Multivariate Statistical Interpolation Scheme , 1981 .
[3] F. L. Dimet,et al. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .
[4] Andrew F. Bennett,et al. Inverse Methods in Physical Oceanography: Frontmatter , 1992 .
[5] A. Bennett. Inverse Methods in Physical Oceanography , 1992 .
[6] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[7] P. Courtier,et al. Assimilation of Simulated Wind Lidar Data with a Kalman Filter , 1993 .
[8] Jun S. Liu,et al. Sequential Imputations and Bayesian Missing Data Problems , 1994 .
[9] G. Evensen. Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .
[10] Philippe Courtier,et al. Dual formulation of four‐dimensional variational assimilation , 1997 .
[11] Jeffrey K. Uhlmann,et al. New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.
[12] Andrew J. Majda,et al. A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields , 1997 .
[13] P. Courtier,et al. The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). II: Structure functions , 1998 .
[14] G. Evensen,et al. Analysis Scheme in the Ensemble Kalman Filter , 1998 .
[15] Chi-Wang Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .
[16] Centro internazionale matematico estivo. Session,et al. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations , 1998 .
[17] P. Houtekamer,et al. Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .
[18] P. Courtier,et al. The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation , 1998 .
[19] Jeffrey L. Anderson,et al. A Monte Carlo Implementation of the Nonlinear Filtering Problem to Produce Ensemble Assimilations and Forecasts , 1999 .
[20] G. Evensen,et al. An ensemble Kalman smoother for nonlinear dynamics , 2000 .
[21] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[22] Nando de Freitas,et al. The Unscented Particle Filter , 2000, NIPS.
[23] T. Hamill,et al. A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .
[24] Jeffrey L. Anderson. An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .
[25] D. Pham. Stochastic Methods for Sequential Data Assimilation in Strongly Nonlinear Systems , 2001 .
[26] Craig H. Bishop,et al. Adaptive sampling with the ensemble transform Kalman filter , 2001 .
[27] P. Houtekamer,et al. A Sequential Ensemble Kalman Filter for Atmospheric Data Assimilation , 2001 .
[28] Brian R. Hunt,et al. Identifying Low-Dimensional Nonlinear Behavior in Atmospheric Data , 2001 .
[29] Nando de Freitas,et al. Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.
[30] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[31] Christian Musso,et al. Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.
[32] Arnaud Doucet,et al. A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..
[33] Istvan Szunyogh,et al. A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .
[34] Neil J. Gordon,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..
[35] J. Whitaker,et al. Ensemble Data Assimilation without Perturbed Observations , 2002 .
[36] Peter Jan van Leeuwen. Ensemble Kalman filters , Sequential Importance Resampling and beyond , 2003 .
[37] P. J. van Leeuwen,et al. A variance-minimizing filter for large-scale applications , 2003 .
[38] J. Yorke,et al. Four-dimensional ensemble Kalman filtering , 2004 .
[39] Jeffrey L. Anderson. A Local Least Squares Framework for Ensemble Filtering , 2003 .
[40] G. Evensen,et al. Sequential Data Assimilation Techniques in Oceanography , 2003 .
[41] J. Whitaker,et al. Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.
[42] G. Kivman,et al. Sequential parameter estimation for stochastic systems , 2003 .
[43] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[44] Geir Evensen,et al. The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .
[45] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[46] Istvan Szunyogh,et al. A local ensemble Kalman filter for atmospheric data assimilation , 2004 .
[47] R. Laubenfels,et al. Feynman–Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2005 .
[48] P. L. Houtekamer,et al. Ensemble Kalman filtering , 2005 .
[49] M. Zupanski. Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .
[50] M. Buehner,et al. Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .
[51] Istvan Szunyogh,et al. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.
[52] D. McLaughlin,et al. Assessing the Performance of the Ensemble Kalman Filter for Land Surface Data Assimilation , 2006 .
[53] G. Evensen. Data Assimilation: The Ensemble Kalman Filter , 2006 .
[54] Étienne Mémin,et al. Partial Linear Gaussian Models for Tracking in Image Sequences Using Sequential Monte Carlo Methods , 2006, International Journal of Computer Vision.
[55] Ionel Michael Navon,et al. A Note on the Particle Filter with Posterior Gaussian Resampling , 2006 .
[56] Istvan Szunyogh,et al. Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM , 2006 .
[57] B. Hunt,et al. A comparative study of 4D-VAR and a 4D Ensemble Kalman Filter: perfect model simulations with Lorenz-96 , 2007 .
[58] Takemasa Miyoshi,et al. Local Ensemble Transform Kalman Filtering with an AGCM at a T159/L48 Resolution , 2007 .
[59] Jeffrey L. Anderson,et al. An adaptive covariance inflation error correction algorithm for ensemble filters , 2007 .
[60] Brian R. Hunt,et al. A non‐Gaussian Ensemble Filter for Assimilating Infrequent Noisy Observations , 2007 .
[61] B. Hunt,et al. Four-dimensional local ensemble transform Kalman filter: numerical experiments with a global circulation model , 2007 .
[62] Istvan Szunyogh,et al. Assessing Predictability with a Local Ensemble Kalman Filter , 2007 .
[63] P. Bickel,et al. Obstacles to High-Dimensional Particle Filtering , 2008 .
[64] Istvan Szunyogh,et al. A local ensemble transform Kalman filter data assimilation system for the NCEP global model , 2008 .
[65] Thomas M. Hamill,et al. Ensemble Data Assimilation with the NCEP Global Forecast System , 2008 .
[66] T. Petti,et al. Pressure image assimilation for atmospheric motion estimation , 2009 .
[67] Peter Jan,et al. Particle Filtering in Geophysical Systems , 2009 .
[68] F. Gland,et al. Large sample asymptotics for the ensemble Kalman filter , 2009 .
[69] Anne Cuzol,et al. A Stochastic Filtering Technique for Fluid Flow Velocity Fields Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[70] A. Majda,et al. Catastrophic filter divergence in filtering nonlinear dissipative systems , 2010 .
[71] Olivier Pannekoucke,et al. Adaptation of a particle filtering method for data assimilation in a 1D numerical model used for fog forecasting , 2012 .