Phenotype–genotype network construction and characterization: a case study of cardiovascular diseases and associated non-coding RNAs

Abstract The phenotype–genotype relationship is a key for personalized and precision medicine for complex diseases. To unravel the complexity of the clinical phenotype–genotype network, we used cardiovascular diseases (CVDs) and associated non-coding RNAs (ncRNAs) (i.e. miRNAs, long ncRNAs, etc.) as the case for the study of CVDs at a systems or network level. We first integrated a database of CVDs and ncRNAs (CVDncR, http://sysbio.org.cn/cvdncr/) to construct CVD–ncRNA networks and annotate their clinical associations. To characterize the networks, we then separated the miRNAs into two groups, i.e. universal miRNAs associated with at least two types of CVDs and specific miRNAs related only to one type of CVD. Our analyses indicated two interesting patterns in these CVD–ncRNA networks. First, scale-free features were present within both CVD–miRNA and CVD–lncRNA networks; second, universal miRNAs were more likely to be CVDs biomarkers. These results were confirmed by computational functional analyses. The findings offer theoretical guidance for decoding CVD–ncRNA associations and will facilitate the screening of CVD ncRNA biomarkers. Database URL: http://sysbio.org.cn/cvdncr/

[1]  Yadong Wang,et al.  miR2Disease: a manually curated database for microRNA deregulation in human disease , 2008, Nucleic Acids Res..

[2]  T Cooper Woods,et al.  Carotid Plaque Rupture Is Accompanied by an Increase in the Ratio of Serum circR-284 to miR-221 Levels , 2017, Circulation. Cardiovascular genetics.

[3]  Lu Zhang,et al.  The circular RNA MICRA for risk stratification after myocardial infarction☆ , 2017, International journal of cardiology. Heart & vasculature.

[4]  J. Mattick,et al.  Non‐coding RNAs: regulators of disease , 2010, The Journal of pathology.

[5]  Ciro Indolfi,et al.  Non-Coding RNAs: The “Dark Matter” of Cardiovascular Pathophysiology , 2013, International journal of molecular sciences.

[6]  Qin Lin,et al.  HDncRNA: a comprehensive database of non-coding RNAs associated with heart diseases , 2018, Database J. Biol. Databases Curation.

[7]  Bairong Shen,et al.  MiRNA-BD: an evidence-based bioinformatics model and software tool for microRNA biomarker discovery , 2018, RNA biology.

[8]  Jie Wu,et al.  deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data , 2015, Nucleic Acids Res..

[9]  A. Blaes,et al.  Shared Risk Factors in Cardiovascular Disease and Cancer , 2016, Circulation.

[10]  Jiajia Chen,et al.  Discovery and characterization of long intergenic non-coding RNAs (lincRNA) module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data , 2015, BMC Genomics.

[11]  Ning Zhang,et al.  The Long Non-Coding RNA SNHG1 Attenuates Cell Apoptosis by Regulating miR-195 and BCL2-Like Protein 2 in Human Cardiomyocytes , 2018, Cellular Physiology and Biochemistry.

[12]  Hong Cheng,et al.  Long non-coding RNA RMST silencing protects against middle cerebral artery occlusion (MCAO)-induced ischemic stroke. , 2018, Biochemical and biophysical research communications.

[13]  Thomas Thum,et al.  Circulating Noncoding RNAs as Biomarkers of Cardiovascular Disease and Injury. , 2017, Circulation research.

[14]  Zhen Yang,et al.  LncRNADisease 2.0: an updated database of long non-coding RNA-associated diseases , 2018, Nucleic Acids Res..

[15]  Chen Chen,et al.  Identification of cardiac long non-coding RNA profile in human dilated cardiomyopathy , 2018, Cardiovascular research.

[16]  Yang Gao,et al.  CSCD: a database for cancer-specific circular RNAs , 2017, Nucleic Acids Res..

[17]  Yan Li,et al.  circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations , 2016, Scientific Reports.

[18]  P. Pandolfi,et al.  The multilayered complexity of ceRNA crosstalk and competition , 2014, Nature.

[19]  J. Mattick,et al.  Non-coding RNA. , 2006, Human molecular genetics.

[20]  Frank Rühle,et al.  Long non-coding RNA Databases in Cardiovascular Research , 2016, Genom. Proteom. Bioinform..

[21]  Jing Xu,et al.  Differential Expression of CircRNAs in Embryonic Heart Tissue Associated with Ventricular Septal Defect , 2018, International journal of medical sciences.

[22]  Bin Li,et al.  Effects of Atorvastatin on Th polarization in patients with acute myocardial infarction , 2005, European journal of heart failure.

[23]  M. Kiriakidou,et al.  An mRNA m7G Cap Binding-like Motif within Human Ago2 Represses Translation , 2007, Cell.

[24]  Mansi Arora,et al.  Human coronary heart disease: importance of blood cellular miR-2909 RNomics , 2014, Molecular and Cellular Biochemistry.

[25]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[26]  Petar Glažar,et al.  circBase: a database for circular RNAs , 2014, RNA.

[27]  Daihiko Hakuno,et al.  MicroRNA-33 Controls Adaptive Fibrotic Response in the Remodeling Heart by Preserving Lipid Raft Cholesterol , 2017, Circulation research.

[28]  P. Camici,et al.  The role of T and B cells in human atherosclerosis and atherothrombosis , 2015, Clinical and experimental immunology.

[29]  Teresa M. Przytycka,et al.  Understanding Genotype-Phenotype Effects in Cancer via Network Approaches , 2016, PLoS Comput. Biol..

[30]  Yan Lin,et al.  DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements , 2013, Nucleic Acids Res..

[31]  Myoung-Hee Kim,et al.  Circulating TNF receptors predict cardiovascular disease in patients with chronic kidney disease , 2017, Medicine.

[32]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[33]  Jiajia Chen,et al.  MicroRNA biomarker identification for pediatric acute myeloid leukemia based on a novel bioinformatics model , 2015, Oncotarget.

[34]  Wei Chen,et al.  ECharts: A declarative framework for rapid construction of web-based visualization , 2018, Vis. Informatics.

[35]  Lei Zhang,et al.  MIAT promotes proliferation and hinders apoptosis by modulating miR-181b/STAT3 axis in ox-LDL-induced atherosclerosis cell models. , 2018, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[36]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  C. Fernández-Hernando,et al.  Noncoding RNAs and Atherosclerosis , 2014, Current Atherosclerosis Reports.

[38]  Lu Zhang,et al.  A heart-enriched antisense long non-coding RNA regulates the balance between cardiac and skeletal muscle triadin. , 2018, Biochimica et biophysica acta. Molecular cell research.

[39]  T. Gaziano,et al.  Cardiovascular Disease in the Developing World and Its Cost-Effective Management , 2005, Circulation.

[40]  Michael Q. Zhang,et al.  NONCODEV5: a comprehensive annotation database for long non-coding RNAs , 2017, Nucleic Acids Res..

[41]  Jiajia Chen,et al.  Computational analysis of microRNA function in heart development. , 2010, Acta biochimica et biophysica Sinica.

[42]  L. Harries,et al.  Long non-coding RNAs and human disease. , 2012, Biochemical Society transactions.

[43]  Ana Kozomara,et al.  miRBase: annotating high confidence microRNAs using deep sequencing data , 2013, Nucleic Acids Res..

[44]  David Erlinge,et al.  MicroRNAs in the failing heart – Novel therapeutic targets? , 2014, Scandinavian cardiovascular journal : SCJ.

[45]  M. Fornage,et al.  Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association , 2017, Circulation.

[46]  Hui Zhou,et al.  starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data , 2013, Nucleic Acids Res..

[47]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[48]  Trey Ideker,et al.  Genotype to phenotype via network analysis. , 2013, Current opinion in genetics & development.

[49]  R. Frye,et al.  Molecular Fingerprint of Interferon-&ggr; Signaling in Unstable Angina , 2001, Circulation.

[50]  Bairong Shen,et al.  Screening key microRNAs for castration-resistant prostate cancer based on miRNA/mRNA functional synergistic network , 2015, Oncotarget.

[51]  A. Keller,et al.  Distribution of miRNA expression across human tissues , 2016, Nucleic acids research.

[52]  Natasha Shroff,et al.  Leukocyte response is regulated by microRNA let7i in patients with acute ischemic stroke , 2016, Neurology.

[53]  D. DeMets,et al.  Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework , 2001, Clinical pharmacology and therapeutics.

[54]  Koh Ono,et al.  MicroRNAs and cardiovascular diseases , 2011, The FEBS journal.

[55]  E. Olson,et al.  MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles , 2012, Nature Reviews Drug Discovery.

[56]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[57]  Marcel E. Dinger,et al.  lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs , 2014, Nucleic Acids Res..

[58]  Sercan Ergün,et al.  Plasma microRNA profiling of children with idiopathic dilated cardiomyopathy , 2016, Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.

[59]  Hong-Yu Ou,et al.  EG: a database of essential genes , 2004, Nucleic Acids Res..

[60]  Bing Han,et al.  Circular RNA DLGAP4 Ameliorates Ischemic Stroke Outcomes by Targeting miR-143 to Regulate Endothelial-Mesenchymal Transition Associated with Blood–Brain Barrier Integrity , 2018, The Journal of Neuroscience.

[61]  Fanming Meng,et al.  Expression status and clinical significance of lncRNA APPAT in the progression of atherosclerosis , 2018, PeerJ.

[62]  Thomas Thum,et al.  Increased Proangiogenic Activity of Mobilized CD34+ Progenitor Cells of Patients With Acute ST-Segment–Elevation Myocardial Infarction: Role of Differential MicroRNA-378 Expression , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[63]  E. Olson,et al.  MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. , 2007, The Journal of clinical investigation.

[64]  Yang Li,et al.  HMDD v2.0: a database for experimentally supported human microRNA and disease associations , 2013, Nucleic Acids Res..

[65]  I. Jurisica,et al.  NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs , 2011, PloS one.

[66]  M. Mann,et al.  Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans , 2016, Nature Communications.

[67]  Igor Jurisica,et al.  mirDIP 4.1—integrative database of human microRNA target predictions , 2017, Nucleic Acids Res..

[68]  Xiaoqian Jiang,et al.  Novel Biomarker MicroRNAs for Subtyping of Acute Coronary Syndrome: A Bioinformatics Approach , 2016, BioMed research international.

[69]  Artemis G. Hatzigeorgiou,et al.  DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions , 2017, Nucleic Acids Res..

[70]  Thomas Thum,et al.  Mitochondrial long noncoding RNAs as blood based biomarkers for cardiac remodeling in patients with hypertrophic cardiomyopathy. , 2016, American journal of physiology. Heart and circulatory physiology.

[71]  Sheng-Shou Hu,et al.  China cardiovascular diseases report 2015: a summary , 2017, Journal of geriatric cardiology : JGC.

[72]  Francesca N. Delling,et al.  Heart Disease and Stroke Statistics—2018 Update: A Report From the American Heart Association , 2018, Circulation.

[73]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[74]  K. Kiura,et al.  Congestive Heart Failure During Osimertinib Treatment for Epidermal Growth Factor Receptor (EGFR)-mutant Non-small Cell Lung Cancer (NSCLC) , 2017, Internal medicine.

[75]  Lawrence H Kushi,et al.  Cardiovascular disease incidence in adolescent and young adult cancer survivors: a retrospective cohort study , 2018, Journal of Cancer Survivorship.

[76]  Sen Yan,et al.  The MALAT1 gene polymorphism and its relationship with the onset of congenital heart disease in Chinese , 2018, Bioscience reports.

[77]  François M Abboud,et al.  Autonomic regulation of the immune system in cardiovascular diseases. , 2017, Advances in physiology education.

[78]  Jiajia Chen,et al.  Clear cell renal cell carcinoma associated microRNA expression signatures identified by an integrated bioinformatics analysis , 2013, Journal of Translational Medicine.

[79]  Tao Zhou,et al.  LncRNA XIST regulates myocardial infarction by targeting miR‐130a‐3p , 2019, Journal of cellular physiology.

[80]  Li Wang,et al.  Lnc2Cancer v2.0: updated database of experimentally supported long non-coding RNAs in human cancers , 2018, Nucleic Acids Res..

[81]  Hongchuan Jin,et al.  MicroRNAs as Potential Biomarkers in Cancer: Opportunities and Challenges , 2015, BioMed research international.

[82]  Hsien-Da Huang,et al.  miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions , 2017, Nucleic Acids Res..

[83]  Nan Wan,et al.  miR-873 suppresses H9C2 cardiomyocyte proliferation by targeting GLI1. , 2017, Gene.

[84]  Gajendra P. S. Raghava,et al.  lncRNome: a comprehensive knowledgebase of human long noncoding RNAs , 2013, Database J. Biol. Databases Curation.

[85]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[86]  Tongbin Li,et al.  miRecords: an integrated resource for microRNA–target interactions , 2008, Nucleic Acids Res..

[87]  M. Gulati,et al.  The connection between the breast and heart in a woman: Breast cancer and cardiovascular disease , 2018, Clinical cardiology.

[88]  Haiyun Wang,et al.  Pathway analysis of microRNAs in mouse heart development , 2010, Int. J. Bioinform. Res. Appl..