Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models

The production of a primordial stochastic gravitational-wave (GW) background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universeʼs evolutionary history. Probes like the cosmic microwave background (CMB) or the baryon acoustic oscillations (BAO) can be used to set upper limits on the stochastic GW background energy density &OHgr; GW ?> for frequencies above 10−15 Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-ℓ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that &OHgr; GW h 0 2 < 3.8 × 10 − 6 ?> at a 95% confidence level for adiabatic initial conditions, which improves over the previous limit by a factor 2.3. Assuming that the primordial GW has been produced by a network of cosmic strings, we have derived exclusion limits in the cosmic string parameter space. If the size of the loops is determined by gravitational back-reaction, string tension values greater than ∼4 × 10 − 9 ?> are excluded for a reconnection probability of 10−3.

[1]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[2]  J. J. Bock,et al.  BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization , 2014, Astronomical Telescopes and Instrumentation.

[3]  S. Klimenko,et al.  Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.

[4]  R. W. Ogburn,et al.  Detection of B-mode polarization at degree angular scales by BICEP2. , 2014, Physical review letters.

[5]  E. M. Leitch,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND B-MODE POLARIZATION POWER SPECTRUM AT SUB-DEGREE SCALES WITH POLARBEAR , 2014, 1403.2369.

[6]  S. Klimenko,et al.  Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. , 2013, Physical review letters.

[7]  K. Olum,et al.  Number of cosmic string loops , 2013, 1309.6637.

[8]  G. W. Pratt,et al.  Planck 2013 results. XVII. Gravitational lensing by large-scale structure , 2013, 1303.5077.

[9]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[10]  G. W. Pratt,et al.  Planck 2013 results Special feature Planck 2013 results . XXV . Searches for cosmic strings and other topological defects , 2014 .

[11]  D. Wake,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring DA and H at z = 0.57 from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample , 2013, 1303.4666.

[12]  David N. Spergel,et al.  The Atacama Cosmology Telescope: temperature and gravitational lensing power spectrum measurements from three seasons of data , 2013, 1301.1037.

[13]  C. A. Oxborrow,et al.  Planck intermediate results XVI. Profile likelihoods for cosmological parameters , 2013, 1311.1657.

[14]  Y. Levin,et al.  Gravitational-Wave Limits from Pulsar Timing Constrain Supermassive Black Hole Evolution , 2013, Science.

[15]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[16]  T. Regimbau,et al.  Accessibility of the stochastic gravitational wave background from magnetars to the interferometric gravitational wave detectors , 2013 .

[17]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[18]  E. Leitch,et al.  SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope , 2012, Other Conferences.

[19]  Alan D. Martin,et al.  Review of Particle Physics: Particle data group , 2012 .

[20]  J. Valle,et al.  Global status of neutrino oscillation parameters after Neutrino-2012 , 2012, 1205.4018.

[21]  Tristan L. Smith,et al.  Improved limits on short-wavelength gravitational waves from the cosmic microwave background , 2012, 1203.4232.

[22]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[23]  V. Mandic,et al.  Accessibility of the gravitational-wave background due to binary coalescences to second and third generation gravitational-wave detectors , 2011, 1112.1898.

[24]  O. Zahn,et al.  NEW LIMITS ON EARLY DARK ENERGY FROM THE SOUTH POLE TELESCOPE , 2011, 1110.5328.

[25]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[26]  A. Melchiorri,et al.  Limits on Dark Radiation, Early Dark Energy, and Relativistic Degrees of Freedom , 2011, 1103.4132.

[27]  Willy Fischler,et al.  Dark radiation emerging after big bang nucleosynthesis , 2010, 1011.3501.

[28]  J. J. Bock,et al.  SPIDER: a balloon-borne CMB polarimeter for large angular scales , 2010, Astronomical Telescopes + Instrumentation.

[29]  Adrian T. Lee,et al.  EBEX: a balloon-borne CMB polarization experiment , 2010, Astronomical Telescopes + Instrumentation.

[30]  M. Halpern,et al.  ACTPol: a polarization-sensitive receiver for the Atacama Cosmology Telescope , 2010, Astronomical Telescopes + Instrumentation.

[31]  V. Mandic,et al.  Gravitational-wave stochastic background from kinks and cusps on cosmic strings , 2010, 1004.0890.

[32]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[33]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[34]  V. Ferrari,et al.  Gravitational wave backgrounds and the cosmic transition from Population III to Population II stars , 2009, 0906.0461.

[35]  T. Kitching,et al.  Finding evidence for massive neutrinos using 3D weak lensing , 2008, 0801.4565.

[36]  A. Slosar,et al.  Improved cosmological bound on the thermal axion mass , 2007, 0705.2695.

[37]  R. Easther,et al.  Gravitational wave production at the end of inflation. , 2006, Physical review letters.

[38]  J. Read,et al.  Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints , 2006, gr-qc/0603115.

[39]  Tristan L. Smith,et al.  New cosmic microwave background constraint to primordial gravitational waves. , 2006, Physical review letters.

[40]  V. Flambaum,et al.  Possible evidence for 'dark radiation' from big bang nucleosynthesis data , 2005, hep-th/0512038.

[41]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .

[42]  New BBN limits on physics beyond the standard model from 4He , 2004, astro-ph/0408033.

[43]  A. Nicolis,et al.  Gravitational waves from electroweak phase transitions , 2001, gr-qc/0107033.

[44]  T. Damour,et al.  Gravitational wave bursts from cosmic strings , 2000, Physical review letters.

[45]  U. Ellwanger,et al.  Brane cosmological evolution in a bulk with cosmological constant , 1999, hep-th/9910219.

[46]  K. Maeda,et al.  The Einstein Equations on the 3-BRANE World:. a Window to Extra Dimensions , 1999, gr-qc/9910076.

[47]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[48]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[49]  M. Kamionkowski,et al.  Detectability of inflationary gravitational waves with microwave background polarization , 1997, astro-ph/9705219.

[50]  M. Turner Detectability of inflation-produced gravitational waves , 1996, astro-ph/9607066.

[51]  A. Buonanno,et al.  Spectrum of relic gravitational waves in string cosmology , 1996, gr-qc/9605072.

[52]  B. Allen The Stochastic Gravity-Wave Background: Sources and Detection , 1996, gr-qc/9604033.

[53]  G. Veneziano,et al.  Relic gravitational waves from string cosmology , 1995, hep-th/9507017.

[54]  Bar-Kana Limits on direct detection of gravitational waves. , 1994, Physical review. D, Particles and fields.

[55]  Bennett,et al.  Evidence for a scaling solution in cosmic-string evolution. , 1988, Physical review letters.

[56]  E. P. S. Shellard,et al.  Cosmic Strings and Other Topological Defects , 1995 .

[57]  Matts Roos,et al.  MINUIT-a system for function minimization and analysis of the parameter errors and correlations , 1984 .

[58]  A. A. Starobinskii,et al.  Spectrum of Relict Gravitational Radiation and the Early State of the Universe - JETP Lett. 30, 682 (1979) , 1979 .

[59]  T W B Kibble,et al.  Topology of cosmic domains and strings , 1976 .