EphB2-dependent signaling promotes neuronal excitotoxicity and inflammation in the acute phase of ischemic stroke

[1]  W. Xu,et al.  EphrinB2 activation enhances angiogenesis, reduces amyloid-β deposits and secondary damage in thalamus at the early stage after cortical infarction in hypertensive rats , 2019, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  A. Obenaus,et al.  Functional Consequences of Synapse Remodeling Following Astrocyte-Specific Regulation of Ephrin-B1 in the Adult Hippocampus , 2018, The Journal of Neuroscience.

[3]  M. Tymianski,et al.  Targeting NMDA receptors in stroke: new hope in neuroprotection , 2018, Molecular Brain.

[4]  DeppConstanze,et al.  Synaptic Activity Protects Neurons Against Calcium-Mediated Oxidation and Contraction of Mitochondria During Excitotoxicity , 2017 .

[5]  Daniel S Spellman,et al.  Extracellular phosphorylation of a receptor tyrosine kinase controls synaptic localization of NMDA receptors and regulates pathological pain , 2017, PLoS biology.

[6]  M. Endres,et al.  EphrinB2 Activation Enhances Vascular Repair Mechanisms and Reduces Brain Swelling After Mild Cerebral Ischemia , 2017, Arteriosclerosis, thrombosis, and vascular biology.

[7]  H. Bading Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations , 2017, The Journal of experimental medicine.

[8]  H. H. Marti,et al.  Neuronal HIF-1α and HIF-2α deficiency improves neuronal survival and sensorimotor function in the early acute phase after ischemic stroke , 2017, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  J. Faber,et al.  Variants of Rab GTPase–Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke , 2016, Stroke.

[10]  H. H. Marti,et al.  Neuronal deficiency of HIF prolyl 4-hydroxylase 2 in mice improves ischemic stroke recovery in an HIF dependent manner , 2016, Neurobiology of Disease.

[11]  A. Kania,et al.  Mechanisms of ephrin–Eph signalling in development, physiology and disease , 2016, Nature Reviews Molecular Cell Biology.

[12]  J. Simard,et al.  Molecular pathophysiology of cerebral edema , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[13]  Y. Koyama,et al.  Pathogenesis of Brain Edema and Investigation into Anti-Edema Drugs , 2015, International journal of molecular sciences.

[14]  B. MacVicar,et al.  The Cellular Mechanisms of Neuronal Swelling Underlying Cytotoxic Edema , 2015, Cell.

[15]  L. Raymond,et al.  Extrasynaptic NMDA Receptor Involvement in Central Nervous System Disorders , 2014, Neuron.

[16]  Y. T. Wang,et al.  Excitotoxicity and stroke: Identifying novel targets for neuroprotection , 2014, Progress in Neurobiology.

[17]  Hui Liu,et al.  EphrinB-mediated reverse signalling controls junctional integrity and pro-inflammatory differentiation of endothelial cells , 2014, Thrombosis and Haemostasis.

[18]  Lexiao Li,et al.  Inhibition of HIF prolyl-4-hydroxylases by FG-4497 Reduces Brain Tissue Injury and Edema Formation during Ischemic Stroke , 2014, PloS one.

[19]  Wei Zhou,et al.  Neuron-Specific Prolyl-4-Hydroxylase Domain 2 Knockout Reduces Brain Injury After Transient Cerebral Ischemia , 2012, Stroke.

[20]  Xin Wei,et al.  Tight Junction in Blood‐Brain Barrier: An Overview of Structure, Regulation, and Regulator Substances , 2012, CNS neuroscience & therapeutics.

[21]  B. Han,et al.  Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface* , 2011, The Journal of Biological Chemistry.

[22]  D. Hermann,et al.  Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia , 2011, Acta Neuropathologica.

[23]  M. Dalva,et al.  EphB Controls NMDA Receptor Function and Synaptic Targeting in a Subunit-Specific Manner , 2011, The Journal of Neuroscience.

[24]  M. Schwaninger,et al.  A Signaling Cascade of Nuclear Calcium-CREB-ATF3 Activated by Synaptic NMDA Receptors Defines a Gene Repression Module That Protects against Extrasynaptic NMDA Receptor-Induced Neuronal Cell Death and Ischemic Brain Damage , 2011, The Journal of Neuroscience.

[25]  T. Ludwig,et al.  Endothelial Cell EphrinB2-Dependent Activation of Monocytes in Arteriosclerosis , 2011, Arteriosclerosis, thrombosis, and vascular biology.

[26]  H. Bading,et al.  Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders , 2010, Nature Reviews Neuroscience.

[27]  N. Pivovarova,et al.  Calcium‐dependent mitochondrial function and dysfunction in neurons , 2010, The FEBS journal.

[28]  Guohong Li,et al.  Inflammatory mechanisms in ischemic stroke: role of inflammatory cells , 2010, Journal of leukocyte biology.

[29]  G. Hardingham Coupling of the NMDA receptor to neuroprotective and neurodestructive events. , 2009, Biochemical Society transactions.

[30]  Hilmar Bading,et al.  Nuclear Calcium Signaling Controls Expression of a Large Gene Pool: Identification of a Gene Program for Acquired Neuroprotection Induced by Synaptic Activity , 2009, PLoS genetics.

[31]  C. Winters,et al.  Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity , 2009, Proceedings of the National Academy of Sciences.

[32]  Christian Gerloff,et al.  Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. , 2009, Stroke.

[33]  G. Mealing,et al.  Elevated Synaptic Activity Preconditions Neurons against an in Vitro Model of Ischemia* , 2008, Journal of Biological Chemistry.

[34]  H. Augustin,et al.  Involvement of endothelial ephrin-B2 in adhesion and transmigration of EphB-receptor-expressing monocytes , 2008, Journal of Cell Science.

[35]  Karin E. Sandoval,et al.  Blood-brain barrier tight junction permeability and ischemic stroke , 2008, Neurobiology of Disease.

[36]  Q. Hou,et al.  Blockade of EphB2 enhances neurogenesis in the subventricular zone and improves neurological function after cerebral cortical infarction in hypertensive rats , 2008, Brain Research.

[37]  H. Augustin,et al.  Role of ephrinB2 expression in endothelial cells during arteriogenesis: impact on smooth muscle cell migration and monocyte recruitment. , 2008, Blood.

[38]  K. Hayashi,et al.  Expression and function of ephrin-B1 and its cognate receptor EphB2 in human atherosclerosis: from an aspect of chemotaxis. , 2008, Clinical science.

[39]  Elena B Pasquale,et al.  Eph-Ephrin Bidirectional Signaling in Physiology and Disease , 2008, Cell.

[40]  E. Ling,et al.  Blood brain barrier in hypoxic-ischemic conditions. , 2008, Current neurovascular research.

[41]  J. Simard,et al.  Cytotoxic edema: mechanisms of pathological cell swelling. , 2007, Neurosurgical focus.

[42]  E. Levine,et al.  Changes in secondary glutamate release underlie the developmental regulation of excitotoxic neuronal cell death , 2005, Neuroscience.

[43]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[44]  J. Mesirov,et al.  From the Cover: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005 .

[45]  J. Tremblay,et al.  EphB6-null mutation results in compromised T cell function. , 2004, The Journal of clinical investigation.

[46]  E. Pasquale,et al.  Eph receptors in the adult brain , 2004, Current Opinion in Neurobiology.

[47]  L. F. Kromer,et al.  Ephrin-B2 and EphB2 Regulation of Astrocyte-Meningeal Fibroblast Interactions in Response to Spinal Cord Lesions in Adult Rats , 2003, The Journal of Neuroscience.

[48]  Yulian Wu,et al.  EphB6 crosslinking results in costimulation of T cells. , 2002, The Journal of clinical investigation.

[49]  H. Bading,et al.  Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways , 2002, Nature Neuroscience.

[50]  T. Bonhoeffer,et al.  Kinase-Independent Requirement of EphB2 Receptors in Hippocampal Synaptic Plasticity , 2001, Neuron.

[51]  M. Dalva,et al.  Modulation of NMDA Receptor- Dependent Calcium Influx and Gene Expression Through EphB Receptors , 2001, Science.

[52]  Michael E Greenberg,et al.  EphB Receptors Interact with NMDA Receptors and Regulate Excitatory Synapse Formation , 2000, Cell.

[53]  M. Moskowitz,et al.  Pathobiology of ischaemic stroke: an integrated view , 1999, Trends in Neurosciences.

[54]  O. Kretz,et al.  Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety , 1999, Nature Genetics.

[55]  A. Bacci,et al.  Synaptogenesis in hippocampal cultures , 1999, Cellular and Molecular Life Sciences CMLS.

[56]  F. Diella,et al.  Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. , 1999, Genes & development.

[57]  T. Pawson,et al.  Nuk Controls Pathfinding of Commissural Axons in the Mammalian Central Nervous System , 1996, Cell.

[58]  L. Pitts,et al.  Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. , 1986, Stroke.

[59]  M. Frotscher,et al.  Hippocampal plasticity requires postsynaptic ephrinBs , 2004, Nature Neuroscience.