Radio channel multiplexing with superpositions of opposite-sign OAM modes

Abstract Exploiting orbital angular momentum (OAM) to implement spatially multiplexed links is an active research topic, both at radio and optical frequencies. We focus on using, in the microwave range, superpositions of modes having opposite OAM values. As known, this approach simplifies dramatically the spatial field distributions, especially in phase. We stress the consequent implementation advantages, and test them experimentally, on an ad-hoc link, about 100 m long, at the unlicensed frequency of 17.2 GHz, in an urban environment. Results are compared with numerical simulations. Performances are discussed vs. those of a conventional MIMO system.

[1]  B. Thid'e,et al.  Encoding many channels on the same frequency through radio vorticity: first experimental test , 2011, 1107.2348.

[2]  Stephen M. Barnett,et al.  Uncertainty principle for angular position and angular momentum , 2004 .

[3]  Bruno Maffei,et al.  Three-dimensional measurements of a millimeter wave orbital angular momentum vortex. , 2014, Optics letters.

[4]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Ben Allen,et al.  Experimental circular phased array for generating OAM radio beams , 2014 .

[6]  M. Padgett,et al.  The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate , 1996 .

[7]  Matteo Oldoni,et al.  Tripling the capacity of a point‐to‐point radio link by using electromagnetic vortices , 2015 .

[8]  Matteo Oldoni,et al.  Space-Division Demultiplexing in Orbital-Angular-Momentum-Based MIMO Radio Systems , 2015, IEEE Transactions on Antennas and Propagation.

[9]  A. Willner,et al.  High-capacity millimetre-wave communications with orbital angular momentum multiplexing , 2014, Nature Communications.

[10]  B. Thid'e,et al.  The physics of angular momentum radio , 2014, 1410.4268.

[11]  Jerry R. Hampton,et al.  Introduction to MIMO Communications , 2013 .

[12]  H. Then,et al.  Utilization of photon orbital angular momentum in the low-frequency radio domain. , 2007, Physical review letters.

[13]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[14]  B. Thidé Electromagnetic Field Theory , 2011 .

[15]  A. Willner,et al.  Terabit free-space data transmission employing orbital angular momentum multiplexing , 2012, Nature Photonics.

[16]  A. Zeilinger,et al.  Communication with spatially modulated light through turbulent air across Vienna , 2014, 1402.2602.

[17]  O. Edfors,et al.  Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area? , 2012, IEEE Transactions on Antennas and Propagation.

[18]  Stuart D. Walker,et al.  4-Gbps Uncompressed Video Transmission over a 60-GHz Orbital Angular Momentum Wireless Channel , 2013, IEEE Wireless Communications Letters.

[19]  A. Tennant,et al.  Generation of OAM radio waves using circular time-switched array antenna , 2012 .

[20]  T. S. Chu,et al.  Geometrical representation of Gaussian beam propagation , 1966 .

[21]  Matteo Oldoni,et al.  Near-Field Experimental Verification of Separation of OAM Channels , 2015, IEEE Antennas and Wireless Propagation Letters.

[22]  M. Teich,et al.  Fundamentals of Photonics , 1991 .