Efficient Algorithms for Diffusion-Generated Motion by Mean Curvature

The problem of simulating the motion of evolving surfaces with junctions according to some curvature-dependent speed arises in a number of applications. By alternately diffusing and sharpening characteristic functions for each region, a variety of motions have been obtained which allow for topological mergings and breakings and produce no overlapping regions or vacuums. However, the usual finite difference discretization of these methods is often excessively slow when accurate solutions are sought, even in two dimensions. We propose a new, spectral discretization of these diffusion-generated methods which obtains greatly improved efficiency over the usual finite difference approach. These efficiency gains are obtained, in part through the use of a quadrature-based refinement technique, by integrating Fourier modes exactly and by neglecting the contributions of rapidly decaying solution transients. Indeed, numerical studies demonstrate that the new algorithm is often more than 1000 times faster than the usual finite difference discretization. Our findings are demonstrated on several examples.

[1]  W. Mullins Two‐Dimensional Motion of Idealized Grain Boundaries , 1956 .

[2]  William B. Gragg,et al.  On Extrapolation Algorithms for Ordinary Initial Value Problems , 1965 .

[3]  J. Miller Numerical Analysis , 1966, Nature.

[4]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[5]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[6]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[7]  G. Huisken Flow by mean curvature of convex surfaces into spheres , 1984 .

[8]  M. Gage,et al.  The heat equation shrinking convex plane curves , 1986 .

[9]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[10]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[11]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[12]  J. Keener,et al.  Singular perturbation theory of traveling waves in excitable media (a review) , 1988 .

[13]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..

[14]  C. V. Thompson,et al.  A two-dimensional computer simulation of capillarity-driven grain growth: Preliminary results , 1988 .

[15]  W. Press,et al.  Fast algorithm for spectral analysis of unevenly sampled data , 1989 .

[16]  Matthew A. Grayson,et al.  A short note on the evolution of a surface by its mean curvature , 1989 .

[17]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[18]  J. Boyd Chebyshev & Fourier Spectral Methods , 1989 .

[19]  M. Grayson Shortening embedded curves , 1989 .

[20]  Sigurd B. Angenent,et al.  Multiphase thermomechanics with interfacial structure 2. Evolution of an isothermal interface , 1989 .

[21]  J. Keller,et al.  Fast reaction, slow diffusion, and curve shortening , 1989 .

[22]  J. Keller,et al.  Reaction-diffusion processes and evolution to harmonic maps , 1989 .

[23]  G. Caginalp The Dynamics of a Conserved Phase Field System: Stefan-like, Hele-Shaw, and Cahn-Hilliard Models as Asymptotic Limits , 1990 .

[24]  James A. Glazier,et al.  Coarsening in the two-dimensional soap froth and the large-Q Potts model: A detailed comparison , 1990 .

[25]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[26]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[27]  Martin J. Dürst,et al.  The design and analysis of spatial data structures. Applications of spatial data structures: computer graphics, image processing, and GIS , 1991 .

[28]  Bruce W. Char,et al.  Maple V Language Reference Manual , 1993, Springer US.

[29]  A. Brandt Multilevel computations of integral transforms and particle interactions with oscillatory kernels , 1991 .

[30]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .

[31]  J. Alison Noble,et al.  Finding half boundaries and junctions in images , 1992, Image Vis. Comput..

[32]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[33]  J. Rubinstein,et al.  Nonlocal reaction−diffusion equations and nucleation , 1992 .

[34]  Kenneth A. Brakke,et al.  The Surface Evolver , 1992, Exp. Math..

[35]  J. Taylor,et al.  Overview No. 98 I—Geometric models of crystal growth , 1992 .

[36]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[37]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .

[39]  Steven J. Ruuth,et al.  Implicit-Explicit Methods for Time-Dependent PDE''s , 1993 .

[40]  James A. Sethian,et al.  Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics , 1993, Exp. Math..

[41]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[42]  L. Bronsard,et al.  On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation , 1993 .

[43]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[44]  D. Griffeath,et al.  Threshold growth dynamics , 1993, patt-sol/9303004.

[45]  M. Glicksman,et al.  Topological rearrangements during 2D normal grain growth , 1993 .

[46]  Vladimir Rokhlin,et al.  Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..

[47]  サイバネットシステム,et al.  MATLAB : high-performance numeric computation and visualization software : エクスターナルインタフェースガイド , 1994 .

[48]  John W. Grove,et al.  Applications of front tracking to the simulation of shock refractions and unstable mixing , 1994 .

[49]  Yung-Sheng Chen Segmentation and association among lines and junctions for a line image , 1994, Pattern Recognit..

[50]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[51]  David L. Chopp,et al.  Computation of Self-Similar Solutions for Mean Curvature Flow , 1994, Exp. Math..

[52]  Fernando Reitich,et al.  Three-phase boundary motions under constant velocities. , 1994 .

[53]  J. Sethian Curvature Flow and Entropy Conditions Applied to Grid Generation , 1994 .

[54]  J. Sethian,et al.  A Fast Level Set Method for Propagating Interfaces , 1995 .

[55]  Eugene Sorets,et al.  Fast Fourier Transforms of Piecewise Constant Functions , 1995 .

[56]  Guillermo Sapiro,et al.  Area and Length Preserving Geometric Invariant Scale-Spaces , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[58]  G. Beylkin On the Fast Fourier Transform of Functions with Singularities , 1995 .

[59]  L. Bronsard,et al.  A numerical method for tracking curve networks moving with curvature motion , 1995 .

[60]  Steven J. Ruuth An algorithm for generating motion by mean curvature , 1996 .

[61]  H. Soner,et al.  Three-phase boundary motions under constant velocities. I: The vanishing surface tension limit , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[62]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[63]  Maurizio Paolini,et al.  A Dynamic Mesh Algorithm for Curvature Dependent Evolving Interfaces , 1996 .

[64]  Marcello Demi,et al.  Contour Tracking by Enhancing Corners and Junctions , 1996, Comput. Vis. Image Underst..

[65]  James A. Sethian,et al.  Theory, algorithms, and applications of level set methods for propagating interfaces , 1996, Acta Numerica.

[66]  Steven J. Ruuth Eecient Algorithms for Diiusion-generated Motion by Mean Curvature , 1997 .

[67]  Steven J. Ruuth A Diffusion-Generated Approach to Multiphase Motion , 1998 .