Bioinspired Strong and Tough Organic–Inorganic Hybrid Fibers

[1]  Mingchao Zhang,et al.  In Situ Mineralizing Spinning of Strong and Tough Silk Fibers for Optical Waveguides. , 2023, ACS nano.

[2]  Chenjing Yang,et al.  Bioinspired Tough and Strong Fibers with Hierarchical Core–Shell Structure , 2022, Advanced Materials Interfaces.

[3]  M. Bauchy,et al.  Resolving the Conflict between Strength and Toughness in Bioactive Silica-Polymer Hybrid Materials. , 2022, ACS nano.

[4]  Fengyu Quan,et al.  Cellulose nanofibers reinforced nanocomposites with high strength and toughness by tunable wet-drawing and ionic cross-linking method , 2022, Composites Part B: Engineering.

[5]  Fengyu Quan,et al.  Scalable Nano Building Blocks of Waterborne Polyurethane and Nanocellulose for Tough and Strong Bioinspired Nanocomposites by a Self-Healing and Shape-Retaining Strategy. , 2022, ACS applied materials & interfaces.

[6]  D. Kaplan,et al.  Engineered Tough Silk Hydrogels through Assembling β-Sheet Rich Nanofibers Based on a Solvent Replacement Strategy. , 2022, ACS nano.

[7]  T. Liao,et al.  Bioinspired Robust Mechanical Properties for Advanced Materials , 2022, Small Structures.

[8]  Z. Shao,et al.  Natural Silk Spinning‐Inspired Meso‐Assembly‐Processing Engineering Strategy for Fabricating Soft Tissue‐Mimicking Biomaterials , 2022, Advanced Functional Materials.

[9]  P. Fratzl,et al.  Mineralization generates megapascal contractile stresses in collagen fibrils , 2022, Science.

[10]  Somnath Ghosh,et al.  Impact damage modeling in woven composites with two-level Parametrically-Upscaled Continuum Damage Mechanics Models (PUCDM) , 2022, Composites Part B: Engineering.

[11]  D. Weitz,et al.  Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales , 2021 .

[12]  Fengyu Quan,et al.  Strategy to Fabricate a Strong and Supertough Bio-Inspired Fiber with Organic-Inorganic Networks in a Green and Scalable Way. , 2021, ACS nano.

[13]  C. Feng,et al.  Ionic Elastomers for Electric Actuators and Sensors , 2021, Engineering.

[14]  Dong Ki Yoon,et al.  Advances in Soft Materials for Sustainable Electronics , 2021 .

[15]  Hongbo Zeng,et al.  Mechanically Strong Proteinaceous Fibers: Engineered Fabrication by Microfluidics , 2021, Engineering.

[16]  Yaopeng Zhang,et al.  Low-loss light-guiding, strong silk generated by a bioinspired microfluidic chip , 2021 .

[17]  Yujia Zhang,et al.  Biomimicking Antibacterial Opto‐Electro Sensing Sutures Made of Regenerated Silk Proteins , 2020, Advanced materials.

[18]  Kai Liu,et al.  Proteinaceous Fibers with Outstanding Mechanical Properties Manipulated by Supramolecular Interactions , 2020 .

[19]  G. Dreyfuss,et al.  U1 snRNP regulates cancer cell migration and invasion , 2019, bioRxiv.

[20]  R. Tang,et al.  Biomimetic Mineralized Organic–Inorganic Hybrid Macrofiber with Spider Silk‐Like Supertoughness , 2019, Advanced Functional Materials.

[21]  Jingjing Xie,et al.  Bioprocess-inspired fabrication of materials with new structures and functions , 2019, Progress in Materials Science.

[22]  D. Kaplan,et al.  Thermoplastic Molding of Regenerated Silk , 2019, Nature Materials.

[23]  O. Ikkala,et al.  Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements , 2019, Science Advances.

[24]  Peter Fratzl,et al.  Biological composites—complex structures for functional diversity , 2018, Science.

[25]  M. Halvarsson,et al.  Transformation of amorphous calcium phosphate to bone-like apatite , 2018, Nature Communications.

[26]  D. Kaplan,et al.  Combining In Silico Design and Biomimetic Assembly: A New Approach for Developing High‐Performance Dynamic Responsive Bio‐Nanomaterials , 2018, Advanced materials.

[27]  Youmin Yu,et al.  Bioinspired Design of Strong, Tough, and Thermally Stable Polymeric Materials via Nanoconfinement. , 2018, ACS nano.

[28]  D. Kaplan,et al.  Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. , 2018, ACS nano.

[29]  K. Numata,et al.  Combination of Amorphous Silk Fiber Spinning and Postspinning Crystallization for Tough Regenerated Silk Fibers. , 2018, Biomacromolecules.

[30]  D. Kaplan,et al.  Nanofibrils in nature and materials engineering. , 2018, Nature reviews. Materials.

[31]  Hugh Alan Bruck,et al.  Processing bulk natural wood into a high-performance structural material , 2018, Nature.

[32]  Anthony J. Giuffre,et al.  Coherently aligned nanoparticles within a biogenic single crystal: A biological prestressing strategy , 2017, Science.

[33]  Wenwen Huang,et al.  Design and function of biomimetic multilayer water purification membranes , 2017, Science Advances.

[34]  Wenwen Huang,et al.  Synergistic Integration of Experimental and Simulation Approaches for the de Novo Design of Silk-Based Materials. , 2017, Accounts of chemical research.

[35]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[36]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[37]  Hui-li Shao,et al.  Hybrid Silk Fibers Dry-Spun from Regenerated Silk Fibroin/Graphene Oxide Aqueous Solutions. , 2016, ACS applied materials & interfaces.

[38]  Anna Rising,et al.  Toward spinning artificial spider silk. , 2015, Nature chemical biology.

[39]  A. Tehrani‐Bagha,et al.  Mesoscopically Ordered Bone‐Mimetic Nanocomposites , 2015, Advanced materials.

[40]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[41]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[42]  Anne-Kathrin Born,et al.  Amyloid‐Hydroxyapatite Bone Biomimetic Composites , 2014, Advanced materials.

[43]  F. Tian,et al.  Nanoconfined crystallites toughen artificial silk. , 2014, Journal of materials chemistry. B.

[44]  S. Kundu,et al.  Silk proteins for biomedical applications: Bioengineering perspectives , 2014 .

[45]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[46]  Se Youn Cho,et al.  Bacterial cellulose nanocrystals-embedded silk nanofibers. , 2012, Journal of nanoscience and nanotechnology.

[47]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[48]  David L. Kaplan,et al.  New Opportunities for an Ancient Material , 2010, Science.

[49]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[50]  O. Tretinnikov,et al.  Influence of Casting Temperature on the Near-Surface Structure and Wettability of Cast Silk Fibroin Films , 2001 .