Electroporation of heterogeneous lipid membranes.

Electroporation is the basis for the transfection of genetic material and for drug delivery to cells, including electrochemotherapy for cancer. By means of molecular dynamics many aspects of membrane electroporation have been unveiled at the molecular detail in simple, homogeneous, lipid bilayers. However, the correspondence of these findings \with the process happening in cell membranes requires, at least, the consideration of laterally structured membranes. Here, I present a systematic molecular dynamics study of bilayers composed of different liquid-ordered and liquid-disordered lipid phases subjected to a transversal electric field. The simulations reveal two significant results. First, the electric field mainly affects the properties of the disordered phases, so that electroporation takes place in these membrane regions. Second, the smaller the disordered domains are, the faster they become electroporated. These findings may have a relevant significance in the experimental application of cell electroporation in vivo since it implies that electro-induced and pore-mediated transport processes occur in particularly small disordered domains of the plasma membrane, thus locally affecting only specific regions of the cell.

[1]  T. Tsong Electric modification of membrane permeability for drug loading into living cells. , 1987, Methods in enzymology.

[2]  L. Cruzeiro-Hansson,et al.  Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. , 1988, Biochimica et biophysica acta.

[3]  D. Tieleman,et al.  Constant pH simulations with the coarse-grained MARTINI model—Application to oleic acid aggregates. , 2013 .

[4]  T. Waldmann,et al.  Dynamic, yet structured: The cell membrane three decades after the Singer–Nicolson model , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  K. Jacobson,et al.  Phase transitions in phospholipid vesicles. Fluorescence polarization and permeability measurements concerning the effect of temperature and cholesterol. , 1973, Biochimica et biophysica acta.

[6]  T. Engels,et al.  Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol. , 2001, Biochimica et biophysica acta.

[7]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[8]  H. L. Scott,et al.  Lateral compressibility of lipid mono- and bilayers. Theory of membrane permeability. , 1978, Biochimica et biophysica acta.

[9]  L. Mir,et al.  The basis of electrochemotherapy. , 2000, Methods in molecular medicine.

[10]  V. V. Petrov,et al.  The appearance of single-ion channels in unmodified lipid bilayer membranes at the phase transition temperature , 1980, Nature.

[11]  I. Vattulainen,et al.  Influence of cis double-bond parametrization on lipid membrane properties: how seemingly insignificant details in force-field change even qualitative trends. , 2008, The Journal of chemical physics.

[12]  G. Cevc,et al.  Membrane electrostatics. , 1990, Biochimica et biophysica acta.

[13]  M. Bureau,et al.  High-efficiency gene transfer into skeletal muscle mediated by electric pulses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Evan Evans,et al.  Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions , 1987 .

[15]  C. Soares,et al.  Constant-pH molecular dynamics using stochastic titration , 2002 .

[16]  J. Silvius,et al.  Role of cholesterol in lipid raft formation: lessons from lipid model systems. , 2003, Biochimica et biophysica acta.

[17]  Eric Jakobsson,et al.  Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation. , 2004, Biophysical journal.

[18]  O. G. Mouritsen,et al.  The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: theory and experiment. , 1992, Biochimica et biophysica acta.

[19]  D Peter Tieleman,et al.  BMC Biochemistry BioMed Central Research article The molecular basis of electroporation , 2004 .

[20]  M. Risk,et al.  Size-controlled nanopores in lipid membranes with stabilizing electric fields. , 2012, Biochemical and biophysical research communications.

[21]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[22]  J. Crowley,et al.  Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. , 1973, Biophysical journal.

[23]  Miguel Machuqueiro,et al.  Constant-pH molecular dynamics with ionic strength effects: protonation-conformation coupling in decalysine. , 2006, The journal of physical chemistry. B.

[24]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[25]  T. Tsong,et al.  Electroporation of cell membranes. , 1991, Biophysical journal.

[26]  P. Thomas Vernier,et al.  Life Cycle of an Electropore: Field-Dependent and Field-Independent Steps in Pore Creation and Annihilation , 2010, The Journal of Membrane Biology.

[27]  D Needham,et al.  Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. , 1989, Biophysical journal.

[28]  R. Hochmuth Electro-mechanical permeabilization of lipid vesicles , 2005 .

[29]  Philip Yeagle,et al.  The Structure of Biological Membranes , 2004 .

[30]  Richard Heller,et al.  Electrochemotherapy, electrogenetherapy, and transdermal drug delivery : electrically mediated delivery of molecules to cells , 2000 .

[31]  U. Keyser,et al.  Phase-state dependent current fluctuations in pure lipid membranes. , 2009, Biophysical journal.

[32]  M. Breton,et al.  Microsecond and nanosecond electric pulses in cancer treatments , 2012, Bioelectromagnetics.

[33]  L. Mir,et al.  Electrochemotherapy, a new antitumor treatment. First clinical phase I‐II trial , 1993, Cancer.

[34]  Mounir Tarek,et al.  Membrane electroporation: a molecular dynamics simulation. , 2005, Biophysical journal.

[35]  H. Eibl,et al.  Electrostatic effects on lipid phase transitions: membrane structure and ionic environment. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Ilpo Vattulainen,et al.  Cholesterol Induces Specific Spatial and Orientational Order in Cholesterol/Phospholipid Membranes , 2010, PloS one.

[37]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[38]  James H. Davis,et al.  The description of membrane lipid conformation, order and dynamics by 2H-NMR. , 1983, Biochimica et biophysica acta.

[39]  S. Koronkiewicz,et al.  Influence of cholesterol on electroporation of bilayer lipid membranes: chronopotentiometric studies. , 2004, Biochimica et biophysica acta.

[40]  Sarah L Veatch,et al.  Miscibility phase diagrams of giant vesicles containing sphingomyelin. , 2005, Physical review letters.

[41]  T. Heimburg,et al.  Lipid ion channels. , 2010, Biophysical chemistry.

[42]  P. Vernier,et al.  Interface water dynamics and porating electric fields for phospholipid bilayers. , 2008, The journal of physical chemistry. B.

[43]  Lucie Delemotte,et al.  Transport of siRNA through lipid membranes driven by nanosecond electric pulses: an experimental and computational study. , 2012, Journal of the American Chemical Society.

[44]  Jana K. Shen,et al.  Predicting pKa values with continuous constant pH molecular dynamics. , 2009, Methods in enzymology.