MISS in Mesoproterozoic Nonstromatolitic Limestones: A Case Study of the Third Member of Gaoyuzhuang Formation at Qiangou Section in Beijing

[1]  L. Pomar,et al.  Carbonate factories: A conundrum in sedimentary geology , 2008 .

[2]  H. Bunge,et al.  Supercontinent cycles disrupted by strong mantle plumes , 2007 .

[3]  Mingxiang Mei,et al.  Implications of the Precambrian Non-stromatolitic Carbonate Succession Making up the Third Member of Mesoproterozoic Gaoyuzhuang Formation in Yanshan Area of North China , 2007 .

[4]  H. Porada,et al.  Wrinkle structures—a critical review , 2007 .

[5]  Mei Ming-xiang Sedimentary Features and Their Implication for the Depositional Succession of Non-stromatolitic Carbonates,Mesoproterozoic Gaoyuzhuang Formation in Yanshan Area of North China , 2007 .

[6]  D. Sumner,et al.  Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. II: A wave‐induced fluid flow model , 2006 .

[7]  D. Sumner,et al.  Molar tooth structures of the Neoarchean Monteville Formation, Transvaal Supergroup, South Africa. I: Constraints on microcrystalline CaCO3 precipitation , 2006 .

[8]  Mingxiang Mei Origin of Molar-Tooth Structure Based on Sequence–Stratigraphic Position and Macroscopic Features: Example from Mesoproterozoic Gaoyuzhuang Formation at Jixian Section, Tianjin, North China , 2006 .

[9]  R. Riding Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time , 2006 .

[10]  J. Bartley,et al.  Morphology of Molar-Tooth Structures in Precambrian Carbonates: Influence of Substrate Rheology and Implications for Genesis , 2006 .

[11]  T. Aïfa,et al.  Suspected microbial mat-related crack-like sedimentary structures in the Palaeoproterozoic Magaliesberg Formation sandstones, South Africa , 2005 .

[12]  O. Catuneanu,et al.  Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India , 2005 .

[13]  Santanu Banerjee,et al.  Microbially originated wrinkle structures on sandstone and their stratigraphic context: Palaeoproterozoic Koldaha Shale, central India , 2005 .

[14]  Hu Xue-guang NEW PROGRESS IN THE RESEARCH OF THE MESOPROTEROZOIC CHANGCHENG SYSTEM (1 800—1 400 Ma) IN THE YANSHAN RANGE, NORTH CHINA , 2005 .

[15]  James G. Ogg,et al.  A new Geologic Time Scale, with special reference to Precambrian and Neogene , 2004 .

[16]  P. Eriksson The Precambrian earth : tempos and events , 2004 .

[17]  B. Beauchamp,et al.  Encyclopedia of Sediments and Sedimentary Rocks , 2005 .

[18]  N. Noffke,et al.  Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic) , 2003 .

[19]  L. Warren,et al.  Microbial Geoengineers , 2003, Science.

[20]  J. Baas,et al.  Ripple, Ripple Mark, Ripple Structure. , 2003 .

[21]  Peter A. Cawood,et al.  Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent , 2002 .

[22]  H. Porada,et al.  Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton (Anti-Atlas, Morocco) , 2002 .

[23]  J. Schieber Sedimentary pyrite: A window into the microbial past , 2002 .

[24]  M. Santosh,et al.  Configuration of Columbia, a Mesoproterozoic Supercontinent , 2002 .

[25]  J. Meert Paleomagnetic Evidence for a Paleo-Mesoproterozoic Supercontinent Columbia , 2002 .

[26]  Wolfgang E. Krumbein,et al.  Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures , 2001 .

[27]  W. Krumbein,et al.  Microbially induced sedimentary structures indicating climatological, Hydrological and depositional conditions within recent and pleistocene coastal facies zones (Southern Tunisia) , 2001 .

[28]  N. Noffke,et al.  Microbial signatures in peritidal siliciclastic sediments: a catalogue , 2000 .

[29]  J. Gehling Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia , 2000 .

[30]  Robert Riding,et al.  Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms , 2000 .

[31]  J. Grotzinger,et al.  Precambrian Carbonates: Evolution of Understanding , 2000 .

[32]  G. Narbonne,et al.  Sedimentology of a Late Mesoproterozoic Muddy Carbonate Ramp, Northern Baffin Island, Arctic Canada , 2000 .

[33]  J. Grotzinger,et al.  Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World , 2000 .

[34]  Friedrich Pflueger Matground structures and redox facies , 1999 .

[35]  J. Gehling Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks , 1999 .

[36]  A. Seilacher Biomat-related lifestyles in the Precambrian , 1999 .

[37]  J. Schieber Microbial mats in terrigenous clastics; the challenge of identification in the rock record , 1999 .

[38]  Stanley M. Awramik,et al.  Proterozoic stromatolites: The first marine evolutionary biota , 1999 .

[39]  N. Noffke Multidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island, southern North Sea) , 1998 .

[40]  J. Schieber Possible indicators of microbial mat deposits in shales and sandstones: examples from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A. , 1998 .

[41]  D. Winston,et al.  Gas bubble and expansion crack origin of molar-tooth calcite structures in the middle Proterozoic Belt Supergroup, western Montana , 1998 .

[42]  R. Riding,et al.  Controls on microbial dome fabric development along a carbonate-siliciclastic shelf-basin transect, Miocene, SE Spain , 1995 .

[43]  H. Chafetz,et al.  Bacterially Induced Lithification of Microbial Mats , 1992 .

[44]  D. Osleger Subtidal carbonate cycles: Implications for allocyclic vs. autocyclic controls , 1991 .

[45]  W. G. Garlick Algal mats, load structures, and synsedimentary sulfides in Revett quartzites of Montana and Idaho , 1988 .

[46]  W. Krumbein,et al.  Geomorphology, Mineralogy and Groundwater Geochemistry as Factors of the Hydrodynamic System of the Gavish Sabkha , 1985 .

[47]  M. O’connor Classification and Environmental Interpretation of the Cryptalgal Organosedimentary "Molar-Tooth" Structure from the Late Precambrian Belt-Purcell Supergroup , 1972, The Journal of Geology.

[48]  R. Berner Sedimentary pyrite formation , 1970 .