A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria.

[1]  R. W. Gracy,et al.  Studies on phosphomannose isomerase. II. Characterization as a zinc metalloenzyme. , 1968, The Journal of biological chemistry.

[2]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[3]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[4]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[5]  M. Gribskov,et al.  The sigma 70 family: sequence conservation and evolutionary relationships , 1992, Journal of bacteriology.

[6]  C. Menck,et al.  Singlet oxygen induced DNA damage. , 1992, Mutation research.

[7]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[8]  Burkhard Rost,et al.  PHD - an automatic mail server for protein secondary structure prediction , 1994, Comput. Appl. Biosci..

[9]  C Sander,et al.  Mapping the Protein Universe , 1996, Science.

[10]  B. Rost,et al.  Topology prediction for helical transmembrane proteins at 86% accuracy–Topology prediction at 86% accuracy , 1996, Protein science : a publication of the Protein Society.

[11]  J P Armitage,et al.  The Rhodobacter sphaeroides flagellar motor is a variable‐speed rotor , 1997, FEBS letters.

[12]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[13]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[14]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[15]  T. Gruber,et al.  Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2 , 1997, Journal of bacteriology.

[16]  S. Doublié Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[17]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K Nadassy,et al.  Analysis of zinc binding sites in protein crystal structures , 1998, Protein science : a publication of the Protein Society.

[19]  J. Irwin,et al.  1 SHARP : A Maximum-Likelihood Heavy-Atom Parameter Refinement Program for the MIR and MAD Methods , 1998 .

[20]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[21]  J. Hahn,et al.  RsrA, an anti‐sigma factor regulated by redox change , 1999, The EMBO journal.

[22]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[23]  J. Newman,et al.  The Rhodobacter sphaeroides ECF sigma factor, sigma(E), and the target promoters cycA P3 and rpoE P1. , 1999, Journal of molecular biology.

[24]  G J Barton,et al.  Application of multiple sequence alignment profiles to improve protein secondary structure prediction , 2000, Proteins.

[25]  I. Beacham,et al.  Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. , 2000, Microbiology.

[26]  W. Lubitz,et al.  How carotenoids protect bacterial photosynthesis. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[28]  J. Newman,et al.  The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. , 2001, Journal of molecular biology.

[29]  W. Li,et al.  Mutational analysis of RsrA, a zinc‐binding anti‐sigma factor with a thiol–disulphide redox switch , 2001, Molecular microbiology.

[30]  Jorge F. Reyes-Spindola,et al.  Radical SAM, a novel protein superfamily linking unresolved steps in familiar biosynthetic pathways with radical mechanisms: functional characterization using new analysis and information visualization methods. , 2001, Nucleic acids research.

[31]  M. Harding,et al.  Geometry of metal-ligand interactions in proteins. , 2001, Acta crystallographica. Section D, Biological crystallography.

[32]  J. Helmann The extracytoplasmic function (ECF) sigma factors. , 2002, Advances in microbial physiology.

[33]  K. Murakami,et al.  Structural Basis of Transcription Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution , 2002, Science.

[34]  S. Darst,et al.  Crystal structure of the Bacillus stearothermophilus anti-sigma factor SpoIIAB with the sporulation sigma factor sigmaF. , 2002, Cell.

[35]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[36]  S. Yokoyama,et al.  Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution , 2002, Nature.

[37]  S. Darst,et al.  Crystal Structure of the Bacillus stearothermophilus Anti-σ Factor SpoIIAB with the Sporulation σ Factor σF , 2002, Cell.

[38]  Wei Li,et al.  Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor sigma(R) from Streptomyces coelicolor. , 2002, Journal of molecular biology.

[39]  V. Braun,et al.  Regulation of the FecI-type ECF sigma factor by transmembrane signalling. , 2003, Current opinion in microbiology.

[40]  M. Buttner,et al.  Thiol-based regulatory switches. , 2003, Annual review of genetics.

[41]  T. Donohue,et al.  Purification of Rhodobacter sphaeroides RNA polymerase and its sigma factors. , 2003, Methods in enzymology.

[42]  C. Gross,et al.  Crystal Structure of Escherichia coli σE with the Cytoplasmic Domain of Its Anti-σ RseA , 2003 .

[43]  S. Ray,et al.  Crystal structure of the flagellar sigma/anti-sigma complex sigma(28)/FlgM reveals an intact sigma factor in an inactive conformation. , 2004, Molecular cell.

[44]  M. H. Werner,et al.  T4 AsiA blocks DNA recognition by remodeling σ70 region 4 , 2004 .

[45]  I. Kochevar Singlet Oxygen Signaling: From Intimate to Global , 2004, Science's STKE.

[46]  J. Dunwell,et al.  Cupins: the most functionally diverse protein superfamily? , 2004, Phytochemistry.

[47]  J. Newman,et al.  Interactions between the Rhodobacter sphaeroides ECF sigma factor, sigma(E), and its anti-sigma factor, ChrR. , 2004, Journal of molecular biology.

[48]  G. Waksman,et al.  Structural biology of bacterial pathogenesis. , 2004, Current Opinion in Structural Biology.

[49]  Seth A. Darst,et al.  Crystal Structure of the Flagellar σ/Anti-σ Complex σ28/FlgM Reveals an Intact σ Factor in an Inactive Conformation , 2004 .

[50]  T4 AsiA blocks DNA recognition by remodeling sigma70 region 4. , 2004, The EMBO journal.

[51]  S. Darst,et al.  Regulation of Bacterial Transcription by Anti-σ Factors , 2005 .

[52]  Timothy J Donohue,et al.  A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. Klug,et al.  Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes. , 2005, Microbiology.

[54]  M. Davies,et al.  The oxidative environment and protein damage. , 2005, Biochimica et biophysica acta.

[55]  U. Jakob,et al.  Zinc center as redox switch--new function for an old motif. , 2006, Antioxidants & redox signaling.

[56]  K. Zdanowski,et al.  Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor. , 2006, Biochemistry.