Reactions and luminescence in passivated Si nanocrystallites induced by vacuum ultraviolet and soft-x-ray photons

Alkyl-modified silicon nanocrystallites are efficient fluorophores which are of interest for fundamental spectroscopic studies and as luminescent probes in biology because of their stability in aqueous media. In this work we have investigated these particles using scanning tunneling microscopy, synchrotron-radiation excited photoemission, and x-ray excited optical luminescence (XEOL). During the course of illumination with 145-eV photons we have monitored the evolution of the Si2p core level and, in samples which have suffered prolonged atmospheric exposure, observed in real time the growth of an extra Si2p component attributed to in situ photoinduced oxidation of the Si nanocrystallites. XEOL reveals that two emission bands are active upon soft-x-ray photon excitation and that photoluminescence intensity decreases with photon exposure, which is attributed to charge trapping within the film.

[1]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[2]  A. Ward,et al.  Immobilisation and synthesis of DNA on Si(111), nanocrystalline porous silicon and silicon nanoparticles. , 2004, Faraday discussions.

[3]  Shui-Tong Lee,et al.  Electronic structure and optical properties of silicon nanowires: A study using x-ray excited optical luminescence and x-ray emission spectroscopy , 2004 .

[4]  M. Stutzmann,et al.  Hydrosilylation of crystalline silicon (111) and hydrogenated amorphous silicon surfaces: A comparative x-ray photoelectron spectroscopy study , 2003 .

[5]  A. Yoshigoe,et al.  Real time observation of initial thermal oxidation using O2 gas on Si(0 0 1) surface by means of synchrotron radiation Si-2p photoemission spectroscopy , 2003 .

[6]  T. Orlando,et al.  Electron-stimulated desorption of D2O coadsorbed with CO2 ice at VUV and EUV energies , 2003 .

[7]  P. H. Binh,et al.  Effect of ageing on the luminescence intensity and lifetime of porous silicon: roles of recombination centers , 2003 .

[8]  A. Houlton,et al.  Preparation and characterisation of luminescent alkylated-silicon quantum dots , 2002 .

[9]  K. Kolasinski,et al.  Vacuum ultraviolet surface photochemistry of water adsorbed on graphite , 2002 .

[10]  Michael J Sailor,et al.  Biomolecular screening with encoded porous-silicon photonic crystals , 2002, Nature Materials.

[11]  J. Valenta,et al.  Photoluminescence from single silicon quantum dots at room temperature , 2002 .

[12]  Lindsay E. Pell,et al.  Electrochemistry and Electrogenerated Chemiluminescence from Silicon Nanocrystal Quantum Dots , 2002, Science.

[13]  M. Oueslati,et al.  The role of ambient ageing on porous silicon photoluminescence: evidence of phonon contribution , 2002 .

[14]  Jan Valenta,et al.  Photoluminescence spectroscopy of single silicon quantum dots , 2002 .

[15]  Hiroyuki Yaguchi,et al.  Composition analysis of SiO2/SiC interfaces by electron spectroscopic measurements using slope-shaped oxide films , 2001 .

[16]  V. Dhanak,et al.  Photoemission study of chemisorption of C60 on InP(100) , 2001 .

[17]  E. Sudhölter,et al.  Molecular Modeling of Covalently Attached Alkyl Monolayers on the Hydrogen-Terminated Si(111) Surface , 2001 .

[18]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[19]  Xin Jian Li,et al.  Strong- and nondegrading-luminescent porous silicon prepared by hydrothermal etching , 1999 .

[20]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[21]  U. Wetterauer,et al.  PHOTOCHEMICAL HYDROGEN DESORPTION FROM H-TERMINATED SILICON(111) BY VUV PHOTONS , 1998 .

[22]  Grace M. Credo,et al.  Luminescence of Individual Porous Si Chromophores , 1998 .

[23]  D. Hill,et al.  Size-controlled percolation pathways for electrical conduction in porous silicon , 1998, Nature.

[24]  A. Loni,et al.  Improved capping layers for suppression of ambient ageing in porous silicon , 1998 .

[25]  A. Taleb-Ibrahimi,et al.  A u / H : S i ( 111 ) − ( 1 × 1 ) interface versus A u / S i ( 111 ) − ( 7 × 7 ) , 1998 .

[26]  M. Nirmal,et al.  Fluorescence intermittency in single cadmium selenide nanocrystals , 1996, Nature.

[27]  Norris,et al.  Photoluminescence Spectroscopy of Single CdSe Nanocrystallite Quantum Dots. , 1996, Physical review letters.

[28]  P. A. Brühwiler,et al.  C 1s ionisation potential and energy referencing for solid C60 films on metal surfaces , 1996 .

[29]  A. Loni,et al.  Reduction of ion beam induced and atmospheric ageing of porous silicon using Al and caps , 1996 .

[30]  F. Sirotti,et al.  Adsorption of water on Si(001)-2 × 1 and Si(111)-7 × 7 surfaces at 90 and 300 K: A Si 2p core-level and valence band study with synchrotron radiation , 1995 .

[31]  Louis E. Brus,et al.  Luminescence of silicon materials : chains, sheets, nanocrystals, nanowires, microcrystals, and porous silicon , 1994 .

[32]  Takeda,et al.  Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell. , 1993, Physical review. B, Condensed matter.

[33]  Matsumoto,et al.  Microstructure and optical properties of free-standing porous silicon films: Size dependence of absorption spectra in Si nanometer-sized crystallites. , 1993, Physical review. B, Condensed matter.

[34]  G. Dujardin,et al.  Ion photodesorption from hydrogenated silicon (111) surfaces , 1993 .

[35]  S. Louie,et al.  Electronic structure and its dependence on local order for H/Si(111)-(1×1) surfaces , 1993 .

[36]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[37]  G. Martinelli,et al.  Effects of ageing on porous silicon photoluminescence: Correlation with FTIR and UV-Vis spectra , 1997 .

[38]  A. Houlton,et al.  Direct functionalization of silicon via the self-assembly of alcohols , 1995 .

[39]  Faraday Discuss , 1985 .

[40]  A. Bianconi Core excitons and inner well resonances in surface soft x-ray absorption (SSXA) spectra , 1979 .