An all-optical soliton FFT computational arrangement in the 3NLSE-domain
暂无分享,去创建一个
[1] Kenneth Steiglitz,et al. When Can Solitons Compute? , 1996, Complex Syst..
[2] Kenneth Steiglitz,et al. Information transfer between solitary waves in the saturable Schrödinger equation , 1997 .
[3] John Edwards,et al. Computing in the 3NLS Domain Using First Order Solitons , 2009, Int. J. Unconv. Comput..
[4] K Steiglitz,et al. Time-gated Manakov spatial solitons are computationally universal. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] Martyn Amos,et al. Unconventional Computation and Natural Computation , 2016, Lecture Notes in Computer Science.
[6] Anastasios G. Bakaoukas. An All-Optical Soliton FFT Computational Arrangement in the 3NLSE-Domain , 2016, UCNC.
[7] Anastasios G. Bakaoukas. Towards an All-Optical Soliton FFT in the 3NLS-Domain , 2013, UCNC.
[8] Numerical analysis of nonlinear soliton propagation phenomena using the fuzzy mesh analysis technique , 1998 .
[9] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[10] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[11] L. Debnath. Solitons and the Inverse Scattering Transform , 2012 .
[12] S. Blair. Optical soliton-based logic gates , 1998 .
[13] John Edwards,et al. Computation in the 3NLS Domain Using First and Second Order Solitons , 2009, Int. J. Unconv. Comput..
[14] Kenneth Steiglitz,et al. Computing with Solitons , 2009, Encyclopedia of Complexity and Systems Science.
[15] Didier Sornette,et al. Encyclopedia of Complexity and Systems Science , 2009 .